筑波大学計算機数学グループ春の館山合宿での講演「数学プログラムを Haskell で書くべき6の理由」の発表資料。実際の講演映像は https://www.youtube.com/watch?v=S4_7KVNA-Ww
圏論からHaskellのIOモナドへの最短距離の近道を示してくれる文書を見つけた。 『モナドへの近道・Haskell からの寄道』 中村翔吾著 がそれだ。数学的にきちんと説明してあるので、読んですぐ理解できるようなものではないが、何となくIOモナドの考え方の雰囲気のようなものは伝わった気がする。 大げさな話になるが、この世界は何でできているかというと、いろいろな物とそれらのあいだの関係で成り立っていると言ってもいい。すなわち、世界のモデルの雛形として、集合Xと集合YとX->Yの関数 f(x) の集まりである関数の集合 Hom(X,Y) を考えることができるということだ。 たとえば、集合 X={1, 2} と集合 Y={a, b} からなる世界があり、X->Yの関数を集めた集合、Hom(X,Y) ={f, g} があったとする。すると、X, Y, Hom(X,Y) の三つの組みでこの世界は成
You don't need to know anything about category theory to use Haskell as a programming language. But if you want to understand the theory behind Haskell or contribute to its development, some familiarity with category theory is a prerequisite.Category theory is very easy at the beginning. I was able to explain what a category is to my 10-year old son. But the learning curve gets steeper and steeper
カリー=ハワード同型(Curry-Howard isomorphism)は数学の一見無関係に思えるふたつの領域、型理論と構造論理を結びつける実に驚くべき関係である。 これよりカリー=ハワード同型は単に C-H と表記する。C-H が示しているのは、定理の本質を反映するような型を構築し、それからその型を持つ値を見つけさえすれば、どんな数学的定理をも証明することができる、ということだ。これは最初は極めて不思議に思える。型と定理にどんな関係があるというのだろうか?しかしながら、以下に述べるように、このふたつは非常に近しい関係にあるのである。はじめる前に簡単に注意しておくが、導入の章では error や undefinedのような 表示的意味論 が ⊥ である式の存在は無視する。これらはとても重要な役割を果たすのだが、これらについては後ほど別に考えることにする。また、unsafeCoerce#のよ
家のなかを森にしたい、という欲望 今年はなんだか観葉植物の観察が楽しい。本日は植物についての記事ですが、土や根っこなどの画像もあるので苦手な方は避けてくださいね。 フィカス・ウンベラータ うちのメイン的存在はフィカス・ウンベラータ。ウンベ殿が我が家にやってきたのは2020年5月。コロナ禍初…
March 2009 Appeared in ICFP 2009 Abstract Automatic differentiation (AD) is a precise, efficient, and convenient method for computing derivatives of functions. Its forward-mode implementation can be quite simple even when extended to compute all of the higher-order derivatives as well. The higher-dimensional case has also been tackled, though with extra complexity. This paper develops an implement
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く