タグ

cpuとc++に関するrydotのブックマーク (2)

  • introdunction to SIMD programming - primitive: blog

    Unite 2015 Tokyo の講演で詳細を話せなかったのが心残りだったので、大量のオブジェクトの更新処理についてこの場で書いてみます。 主に C++ で、簡単なパーティクルエンジンを作り、それを SIMD を用いて高速化する手順を解説します。 話を簡単にするため、以下の前提を設けます。 ・x86 環境のみ考慮 ・パーティクルは位置と速度のみを保持 ・パーティクル同士の相互衝突は総当たりで計算 総当たりなので超遅いですが、実装は容易で SIMD による恩恵を受けやすく、題材として手頃です。 この記事の中で引用されているソースの元は こちら、ビルド結果 (上のスクリーンショットのデモプログラム) は こちら になります。 相互衝突するパーティクルを実装する場合、お互いの距離を計算し、当たっていたらめり込み具合に応じて押し返す、というのがよくある実装だと思います。まずはそれをストレートに

    introdunction to SIMD programming - primitive: blog
  • プログラムを高速化する話

    9. 9 最適化について 「細かい効率のことは忘れて、時間の 97% について考え よう。時期尚早な最適化は諸悪の根源だ。それでも残り 3% についても機会を逃すべきではない」 - Donald E. Knuth 「プログラム最適化の第一法則 : 最適化するな。 プログラム最適化の第二法則 ( 上級者限定 ): まだするな。 」 - Michael A. Jackson 11. 11 最適化の対象 主に Intel の Haswell マイクロアーキテクチャ以降を対象 多くのテクニックは他のプロセッサにも応用できます ベース マイクロアーキテクチャ プロセスルール 登場年 Nehalem Nehalem 45nm 2008 〃 Westmere 32nm 2010 Sandy Bridge Sandy Bridge 32nm 2011 〃 Ivy Bridge 22nm 2012 Hasw

    プログラムを高速化する話
  • 1