タグ

learningとalgorithmに関するrydotのブックマーク (5)

  • 人工知能を実現する学習アルゴリズムに必要な能力 - 人工知能に関する断創録

    今年は、Deep Learningを研究する予定(2014/1/4)だったのだけれど、多層パーセプトロンまで到達した(2014/2/5)ところで少々(?)足踏みしている。Deep Learningの構成要素であるボルツマンマシンを理解するのに手間取っているためだ。ボルツマンマシンの理解には、マルコフ確率場やMCMCの理解が必要なことがわかったので少し廻り道してモンテカルロ法を先に勉強(2014/6/20)していたというわけ。 ただ、そればかりでは少々退屈になってきたので少し先回りして Deep Learning の先駆者のBengioさんが書いた論文 Learning Deep Architectures for AI を勉強している。示唆に富む見解が多いのであとで振り返られるように記録しておきたい。 まずは、1.1節のDesiderate for Learning AIの部分。人工知能

    人工知能を実現する学習アルゴリズムに必要な能力 - 人工知能に関する断創録
  • パターン認識の人手最強伝説 - 武蔵野日記

    午前中は機械学習の基礎勉強会の最終回。1冊全部通読できてよかった。 昼から研究室配属の説明会。誰がうちの研究室を希望してくれるかな? 連続して学部3年生のプロジェクト実習の最終発表会。学生たちが各自チームで半年間研究した成果を発表してくれた。トップバッターの女の子4人組チームがとてもプレゼンがうまく、出した数値も段違いによく、他のチームのほぼダブルスコアで、最優秀発表賞を受賞していた。ポスター発表を聞くと、ポスターにはアルゴリズムが前面に書かれていたが、質問してみたところアルゴリズムが問題なのではなく、驚くべき手法によってその精度が達成されていた。 タスクは顔画像認識で、人物の映る画像が与えられたとき、それが誰か当てるという課題。ただ、この実験は設定が特殊で、画像に手を加えてもいいことになっていた。そこで、彼女たちは数千枚の写真画像からなる訓練事例とテスト事例の両方で、まず顔の中心点を決め

    パターン認識の人手最強伝説 - 武蔵野日記
  • 第4回 #DSIRNLP で Active Learning 入門について話しました - 木曜不足

    @overlast さん主宰の データ構造と情報検索と言語処理勉強会(DSIRNLP) の第4回にのこのこ参加して、Active Learning 入門なるものを発表してきました。お疲れ様でした&ありがとうございました>各位 こちらが発表資料。 Active Learning 入門 from Shuyo Nakatani 入門とか偉そうに歌ったけど勉強し始めてまだ1月半もないので、実は入門しているのは中谷人である。 動機は資料にも書いたとおり、ドメイン適応をドメイン知識のある人が低コストで行うのに Active Learning の技術が使えるのでは、というあたり。 ここまで実験した範囲でそれなりの手応えはあるものの、非常に単純なテキスト分類問題で試しただけなので、もう少し難しくて現実的なタスクでもいろいろ試してみたいと思っている。 発表資料に間に合わなくて20数回の試行で Query-

    第4回 #DSIRNLP で Active Learning 入門について話しました - 木曜不足
  • Page Web de Jean-Christophe Janodet

    AROBAS Team, IBISC Lab, Department of Computer Science, University of Evry, IBGBI Building, 23 Boulevard de France, 91037 Evry, FRANCE Welcome! I'm about 45 years old, and the father of 2 nice kids. I'm a full professor at the University of Evry, 25km in the South of Paris. I do my research in the AROBAS Research Team of the IBISC Lab. I've been maître de conférences (professor assistant) at the U

  • BLOG::broomie.net: 機械学習の勉強を始めるには

    thriftとかhadoopなど,何やらいろいろと手を出してしまい,ここのところブログの更新が滞ってしまっていますが,今日は前から書きたかったトピックについて自分へのメモの意味も含めて記しておきたいと思います. はじめに 最近,といっても結構前からなのですが,海外のブログなどで「機械学習の勉強を始めるガイドライン」についてのエントリーがいくつか見られ,かつ,議論も少し盛り上がっています.僕は機械学習が好きなだけで,専門というにはほど遠いのですが,僕も一利用者としてはこのトピックに関してはとても興味があります. 機械学習というと,色々な数学的な知識が必要であったり,統計学や人工知能の知識も必要になったりしまったりと,専門的に学ぶ機会が無かった人にとっては興味が湧いてもなかなか始めるには尻込みしてしまうことかと思います.今日紹介するエントリーは,そんな方々にヒントになるような内容になっていると

  • 1