タグ

ブックマーク / qiita.com/drken (8)

  • 二分探索アルゴリズムを一般化 〜 めぐる式二分探索法のススメ 〜 - Qiita

    0. はじめに 二分探索法は単純ながらも効果が大きく印象に残りやすいもので、アルゴリズム学習のスタート地点に彩られた花という感じです。二分探索というと「ソート済み配列の中から目的のものを高速に探索する」アルゴリズムを思い浮かべる方が多いと思います。巨大なサイズのデータを扱う場面の多い現代ではそれだけでも十分実用的ですが、二分探索法はもっとずっと広い適用範囲を持っています。 記事では、二分探索法のエッセンスを抽象化して、適用範囲の広い「二分探索法の一般形」を紹介します。同時に無数にある二分探索の実装方法の中でも「めぐる式二分探索」がバグりにくいと感じているので、紹介したいと思います。 注意 1: 二分探索の計算時間について 二分探索の計算時間について簡単に触れておきたいと思います。例えば「$n$ 個の要素からなるソート済み配列から目的の値を探索する」というよく知られた設定であれば、 単純な

    二分探索アルゴリズムを一般化 〜 めぐる式二分探索法のススメ 〜 - Qiita
  • アルゴリズム本、書きました! - Qiita

    最後に、17 章で PとNPに関する話題を解説し、世の中には「効率的に解くアルゴリズムを設計することができそうにない難問」が多数あることを見ます。18 章で、これらの難問に取り組むための方法論をまとめます。 競プロをやっている方向け 扱っている題材の難易度については、こんな感じのイメージです! チーター < 書 = 螺旋 < 蟻 難易度が近い螺旋は、スタンスが異なる部分もありますので、よい形で共存できたら、という想いです。 螺旋と比べると、「動的計画法」「貪欲法」「二分探索法」などの設計技法に関する話題をより重視しています 螺旋は「ライブラリを揃えていく」という思想なので、設計技法よりもライブラリになるものを重視する立場です 書では、紙面の都合で「計算幾何学」と「整数論」には触れられませんでしたが、これらは螺旋には載っています 2-2. 書の対象読者 書は、「アルゴリ

    アルゴリズム本、書きました! - Qiita
  • 再帰関数を学ぶと、どんな世界が広がるか - Qiita

    0. はじめに 再帰関数は初めて学ぶときに壁になりがちで なんとなくわかった...けれど どんな場面で使えるのだろう...いい感じの例を探したい! という気持ちになりがちです。再帰関数は、なかなかその動きを直感的に想像することが難しいため、掴み所が無いと感じてしまいそうです。 そこで記事では 再帰関数の動きを追いまくることで、再帰関数自体に慣れる 再帰的なアルゴリズムの実例に多数触れることで、世界を大きく広げる! ことを目標とします。特に「再帰関数がどういうものかはわかったけど、使いどころがわからない」という方のモヤモヤ感を少しでも晴らすことができたら嬉しいです。なお記事では、ソースコード例に用いるプログラミング言語として C++ を用いておりますが、基的にはプログラミング言語に依存しない部分についての解説を行っています。 追記 1. 再帰関数とは 再帰の意味はとても広いです。自分自

    再帰関数を学ぶと、どんな世界が広がるか - Qiita
  • 三角関数は何に使えるのか 〜 サイン・コサイン・タンジェントの活躍 〜 - Qiita

    「他にこんなのがある」というのがあったら是非いっぱい教えてください! 歴史的に最も古くからある用途は「測量」でしょう。三角関数誕生のキッカケはまさに測量の必要性にありました。比較的日常生活でも見る機会がありそうな用途でしょうか。 ログハウス ケーキカット 震災時の家の傾き推定 現代では「波」としての用途が多いでしょうか。Twitter での様々な人のコメントを見ていても、 おっぱい関数 jpeg 画像 音声処理 といった具合に、波に関する話がかなり多いイメージです。これらの三角関数の使われ方を特集してみます。様々な分野に共通する三角関数の使い方のエッセンスを抽出したつもりですが、これでもかなり分量が多くなりました。摘みいするような感覚で読んでいただけたら幸いです。 2. 三角関数の 3 つの顔 最初に三角関数には大きく 3 つの定義があったことを振り返っておきます。以下の記事にとてもよく

    三角関数は何に使えるのか 〜 サイン・コサイン・タンジェントの活躍 〜 - Qiita
  • 特集!知らないと損をする計算量の話 - Qiita

    1. はじめに 今回は実務プログラミングにおいて知らず知らずのうちに遅いコードになっていそうな例をいくつか挙げて、それを計算量の観点から高速化してみたいと思います。 2. 計算量を意識することにどんな意味があるか 身近な例として、Qiita Contribution ランキングの作成を考えてみましょう。ランキングを作成するためには、各ユーザーの Contribution 数を大きい順に並び替える処理、すなわちソートが必要になります。 Qiita ユーザー数は現在およそ $30$ 万人です。標準ライブラリの sort を用いれば、それほどの計算時間はかからないと思います。しかし仮にこれを愚直な sort アルゴリズム (例えば、挿入ソートやバブルソートなど) で実行したら恐ろしいことになります。 愚直なソートは、並び替える要素の個数の 2 乗に比例した時間がかかります。すなわち $n$ を並

    特集!知らないと損をする計算量の話 - Qiita
  • 計算量オーダーの求め方を総整理! 〜 どこから log が出て来るか 〜 - Qiita

    NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。今回は計算量オーダーの求め方について書きます。 0. はじめに 世の中の様々なシステムやソフトウェアはアルゴリズムによって支えられています。Qiita Contribution ランキング作成のために用いるソートアルゴリズムのような単純なものから、カーナビに使われている Dijkstra 法、流行中のディープラーニングに用いられている確率的勾配降下法など、様々な場面でアルゴリズムが活躍しています。アルゴリズムとはどんなものかについて具体的に知りたい方には以下の記事が参考になると思います: アルゴリズムとは何か ~ 文系理系問わず楽しめる精選 6 問 ~ アルゴリズムを学ぶと $O(n^2)$ や $O(n\log{n})$ や $O(2^n)$ といった計算量オーダーの概念が登場します。こうした記法を見ると

    計算量オーダーの求め方を総整理! 〜 どこから log が出て来るか 〜 - Qiita
  • アルゴリズムとは何か!? ~ 文系理系問わず楽しめる精選 6 問 ~ - Qiita

    今の場合は A さんが 31 歳の場合のストーリーでしたが、A さんが 20 歳~ 35 歳のうちのどの年齢であったとしても、似たようなストーリーで必ず 4 回の質問で当てることができます!(他の例も是非考えてみてください。) ちなみに、このような「真ん中で切ってどちらかに絞って行く」タイプのアルゴリズムには二分探索法という名前がついています。応用情報技術者試験でも頻出のテーマですので馴染みのある方も多いと思います。 1-2. つまり、アルゴリズムとは 上の年齢当てゲームという問題では、相手の年齢を当てる「方法・手順」を二分探索法に基づいて導きました。このようにアルゴリズムとは、 問題を解くための方法・手順 のことです。さて、アルゴリズムと聞くと「コンピュータ上で実装されたプログラム」のことを思い浮かべる方も多いと思いますが、必ずしもコンピュータと関係がある必要はなく、日常生活でも多々登場

    アルゴリズムとは何か!? ~ 文系理系問わず楽しめる精選 6 問 ~ - Qiita
  • ソートアルゴリズムを極める! 〜 なぜソートを学ぶのか 〜 - Qiita

    NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。 今回はソートについて記します。 0. はじめに データ構造とアルゴリズムを学ぶと一番最初に「線形探索」や「ソート」が出て来ます。これらのテーマは応用情報技術者試験などでも頻出のテーマであり、アルゴリズムの Hello World とも呼ぶべきものです。 特にソートは、 計算量の改善 ($O(n^2)$ から $O(n\log{n})$ へ) 分割統治法 ヒープ、バケットなどのデータ構造 乱択アルゴリズムの思想 といった様々なアルゴリズム技法を学ぶことができるため、大学の授業でも、アルゴリズム関連の入門書籍でも、何種類ものソートアルゴリズムが詳細に解説される傾向にあります。記事でも、様々なソートアルゴリズムを一通り解説してみました。 しかしながら様々な種類のソートを勉強するのもよいが、「ソートの使い方」や

    ソートアルゴリズムを極める! 〜 なぜソートを学ぶのか 〜 - Qiita
  • 1