並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 14 件 / 14件

新着順 人気順

python if key in dict does not existの検索結果1 - 14 件 / 14件

  • LangChainを使わない - ABEJA Tech Blog

    TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

      LangChainを使わない - ABEJA Tech Blog
    • AWS Lambdaにblenderを載せてサーバーレスなレンダリングサーバーを作る

      初めまして、株式会社Berryの齋藤です。 みなさまLambdaはやっておりますでしょうか。 Berryでも3Dデータの自動処理を行う上で数多くのLambda関数を作成、運用しています。 その中で3Dデータのプレビュー生成が必要になったため、blenderによるプレビュー生成を行うことにしました。 通常であればEC2を使い、レンダリングサーバーを立てることが一般的かと思いますが、費用面・運用面を考慮し、Lambdaによるサーバーレスなレンダリングサーバーを作成することにしました。 非常にニッチなユースケースですが、ざっと検索したところ日本語の情報が少なかったので、今回はblenderをLambda上で動かす方法を紹介したいと思います。 サンプルリポジトリ 前提条件 AWS CLIとAWSアカウントが設定済み Dockerインストール済み (x64のCPUで検証しています。armの場合はダウ

        AWS Lambdaにblenderを載せてサーバーレスなレンダリングサーバーを作る
      • A viable solution for Python concurrency

        Concerns over the performance of programs written in Python are often overstated — for some use cases, at least. But there is no getting around the problem imposed by the infamous global interpreter lock (GIL), which severely limits the concurrency of multi-threaded Python code. Various efforts to remove the GIL have been made over the years, but none have come anywhere near the point where they w

        • Azure OpenAI Service の Assistants API でデータ分析 - Taste of Tech Topics

          こんにちは、igaです。 最近は気温の上下が大きいので、服装選びが大変ですね。 今回は、Azure OpenAI Servce Assistants APIを使ってみました。 Azure OpenAI Servce Assistants APIに横浜市の人口データを投入して、人口の増減がどう推移しているのか自動で分析させてみました。 Azure OpenAI Servce Assistants API Azure OpenAI Servce Assistants APIとは Azure OpenAI Servce Assistants APIは、2024年4月現在パブリックプレビューとして利用できる機能です。 learn.microsoft.com Azure OpenAI Servce Assistants API(以降、Assistantsと表記します)により、Azure OpenAI

            Azure OpenAI Service の Assistants API でデータ分析 - Taste of Tech Topics
          • BigQueryを補完する技術: DuckDBとDataflowでのデータ処理入門 - yasuhisa's blog

            背景 & Disclaimer DuckDB 概念や代表的なユースケース 使ってみる 1週間〜一ヶ月などある程度の期間、分析で使いたい場合 便利なCLIツールとして使う 所感 参考 Dataflow 代表的なユースケース 具体例 参考 背景 & Disclaimer BigQueryは非常に便利で、BigQueryにさえ上がってしまえばSQLで巨大なデータを簡単に相手にできます とはいえ、BigQueryに行きつくまでが大変な場合もありえます 例: 個人情報を含むsensitiveなデータで、BigQueryに気軽に上げられないケース 一時的であっても、相談なしにその手のデータを気軽にアップロードするのはやめてください... 数万件程度であれば手元のエクセルで開いて、問題ない行/列だけに絞る、ということもできるが、もっと量が多いデータだとそういうわけにもいかない。そもそも分析はSQLでやり

              BigQueryを補完する技術: DuckDBとDataflowでのデータ処理入門 - yasuhisa's blog
            • Bucket full of secrets – Terraform exfiltration | Mercari Engineering

              Background At Mercari, we utilize many microservices developed across multiple different teams. Each team has ownership over not only their code, but also the infrastructure necessary to run their services. To allow developers to take ownership of their infrastructure we use HashiCorp Terraform to define the infrastructure as code. Developers can use Terraform native resources or custom modules pr

                Bucket full of secrets – Terraform exfiltration | Mercari Engineering
              • 【論文詳解】RestGPT: ユーザ指示からRESTful APIを実行する新たなLLMエージェント

                はじめに 初めまして、株式会社Carnotでインターンをしている長谷川と申します。 Carnotでは、LLMを活用し日々の業務フローの効率化や自動化をするためのソリューション「Promptflow」の開発を行っています。 上記のようなワークフローを作成する際には、SlackやGmail、Notionなど各サービスのAPIを連携させていく必要があります。しかし、そのような開発にはプログラミングの知識が必須で、非エンジニアにとってAPIを用いたシステムを作成することは難しいと思われます。そこで、今回は言語のみの指示から複数のAPIを呼び出すことが可能なRestGPTという手法を調査しました。 例えば音楽配信サービスを使う中で「YOASOBIが出した最新のアルバムを自分のプレイリストに追加する」という作業をしたい時、これを自分で行うのは面倒である上、コードを書いて自動化するのも非エンジニアにとっ

                  【論文詳解】RestGPT: ユーザ指示からRESTful APIを実行する新たなLLMエージェント
                • What's New in Emacs 28.1?

                  Try Mastering Emacs for free! Are you struggling with the basics? Have you mastered movement and editing yet? When you have read Mastering Emacs you will understand Emacs. It’s that time again: there’s a new major version of Emacs and, with it, a treasure trove of new features and changes. Notable features include the formal inclusion of native compilation, a technique that will greatly speed up y

                  • bytecode interpreters for tiny computers ⁑ Dercuano

                    Introduction: Density Is King (With a Tiny VM) I've previously come to the conclusion that there's little reason for using bytecode in the modern world, except in order to get more compact code, for which it can be very effective. So, what kind of a bytecode engine will give you more compact code? Suppose I want a bytecode interpreter for a very small programming environment, specifically to minim

                    • Python behind the scenes #11: how the Python import system works

                      If you ask me to name the most misunderstood aspect of Python, I will answer without a second thought: the Python import system. Just remember how many times you used relative imports and got something like ImportError: attempted relative import with no known parent package; or tried to figure out how to structure a project so that all the imports work correctly; or hacked sys.path when you couldn

                      • Plan 9 Desktop Guide

                        PLAN 9 DESKTOP GUIDE INDEX What is Plan 9? Limitations and Workarounds Connecting to Other Systems VNC RDP SSH 9P Other methods Porting Applications Emulating other Operating Systems Virtualizing other Operating Systems Basics Window Management Copy Pasting Essential Programs Manipulating Text in the Terminal Acme - The Do It All Application Multiple Workspaces Tiling Windows Plumbing System Admin

                        • From Python to Elixir Machine Learning

                          As Elixir's Machine Learning (ML) ecosystem grows, many Elixir enthusiasts who wish to adopt the new machine learning libraries in their projects are stuck at a crossroads of wanting to move away from their existing ML stack (typically Python) while not having a clear path of how to do so. I would like to take some time to talk to WHY I believe now is a good time to start porting over Machine Lear

                            From Python to Elixir Machine Learning
                          • GitHub - ComfyUI-Workflow/awesome-comfyui: A collection of awesome custom nodes for ComfyUI

                            ComfyUI-Gemini_Flash_2.0_Exp (⭐+172): A ComfyUI custom node that integrates Google's Gemini Flash 2.0 Experimental model, enabling multimodal analysis of text, images, video frames, and audio directly within ComfyUI workflows. ComfyUI-ACE_Plus (⭐+115): Custom nodes for various visual generation and editing tasks using ACE_Plus FFT Model. ComfyUI-Manager (⭐+113): ComfyUI-Manager itself is also a cu

                              GitHub - ComfyUI-Workflow/awesome-comfyui: A collection of awesome custom nodes for ComfyUI
                            • Django for Startup Founders: A better software architecture for SaaS startups and consumer apps

                              In an ideal world, startups would be easy. We'd run our idea by some potential customers, build the product, and then immediately ride that sweet exponential growth curve off into early retirement. Of course it doesn't actually work like that. Not even a little. In real life, even startups that go on to become billion-dollar companies typically go through phases like: Having little or no growth fo

                              1