並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 20 件 / 20件

新着順 人気順

python interactive plottingの検索結果1 - 20 件 / 20件

  • TabFS

    Going through the files inside a tab's folder. For example, the url.txt, text.txt, and title.txt files tell me those live properties of this tab (Read more up-to-date documentation for all of TabFS's files here.) This gives you a ton of power, because now you can apply all the existing tools on your computer that already know how to deal with files -- terminal commands, scripting languages, point-

      TabFS
    • Rustでグラフをplotするライブラリのまとめ - Stimulator

      - はじめに - Rustでグラフを描画したいと思った時に調べたクレートとその実装、機能のまとめた時のメモ。 現状はplottersを使っておけば間違いなさそうだが、目的によっては機能で選択する場合もありそう。 - はじめに - - 前提知識 - - グラフ描画クレートざっくりまとめ - plotters plotly plotlib poloto rustplotlib RustGnuplot preexplorer vega_lite_4.rs dataplotlib chord_rs - アスキーアート系のクレート - - 記事外で参考になりそうな記事 - - おわりに - - 前提知識 - グラフの描画までの機能としては、matplotlibのようにaxisやviewを構造体として持っているライブラリもあれば、受け取った配列をそのままgnuplotのスクリプトに変換するライブラリも

        Rustでグラフをplotするライブラリのまとめ - Stimulator
      • Python open source libraries for scaling time series forecasting solutions

        By Francesca Lazzeri. This article is an extract from the book Machine Learning for Time Series Forecasting with Python, also by Lazzeri, published by Wiley. In the first and second articles in this series, I showed how to perform feature engineering on time series data with Python and how to automate the Machine Learning lifecycle for time series forecasting. In this third and concluding article,

          Python open source libraries for scaling time series forecasting solutions
        • Python Jupyter Notebooks in Excel

          Jupyter Notebooks in Microsoft Excel. Image by the author.It used to be an “either/or” choice between Excel and Python Jupyter Notebooks. With the introduction of the PyXLL-Jupyter package now you can use both together, side by side. In this article I’ll show you how to set up Jupyter Notebooks running inside Excel. Share data between the two and even call Python functions written in your Jupyter

            Python Jupyter Notebooks in Excel
          • leafmap

            Home Home Book Installation Get Started Usage Web App Tutorials Contributing FAQ Changelog YouTube Channel Report Issues API Reference Workshops Notebooks Welcome to leafmap¶ A Python package for geospatial analysis and interactive mapping in a Jupyter environment. GitHub repo: https://github.com/opengeos/leafmap Documentation: https://leafmap.org PyPI: https://pypi.org/project/leafmap Conda-forge

            • Why We Use Julia, 10 Years Later

              Exactly ten years ago today, we published "Why We Created Julia", introducing the Julia project to the world. At this point, we have moved well past the ambitious goals set out in the original blog post. Julia is now used by hundreds of thousands of people. It is taught at hundreds of universities and entire companies are being formed that build their software stacks on Julia. From personalized me

                Why We Use Julia, 10 Years Later
              • Math Inspector

                A Visual Programming Environment for Scientific Computing Free open source software designed for students, content creators, and professional mathematicians Download version 0.9.4 (Beta) Imagine web inspector, except for math and with block coding Python Interpreter Math inspector is a traditional python interpreter that has a number of quality of life improvements; such as syntax highlighting, an

                  Math Inspector
                • Data dashboarding tools | Streamlit v.s. Dash v.s. Shiny vs. Voila vs. Flask vs. Jupyter

                  Just tell me which one to useAs always, “it depends” – but if you’re looking for a quick answer, you should probably use: Dash if you already use Python for your analytics and you want to build production-ready data dashboards for a larger company.Streamlit if you already use Python for your analytics and you want to get a prototype of your dashboard up and running as quickly as possible.Shiny if

                    Data dashboarding tools | Streamlit v.s. Dash v.s. Shiny vs. Voila vs. Flask vs. Jupyter
                  • Visualisation Libraries - JavaScript, Python and More

                    The libraries and toolkits discussed in this article can be used for rendering dynamic plot on desktop, mobile and web-based platforms so that a quick summary of results can be presented. These tools can be used by data scientists and researchers for an effective analysis of dynamic data. But, before moving on to these tools/libraries, let's look at some obvious points! The key features and charac

                      Visualisation Libraries - JavaScript, Python and More
                    • GitHub - karolzak/ipyplot: IPyPlot is a small python package offering fast and efficient plotting of images inside Python Notebooks. It's using IPython with HTML for faster, richer and more interactive way of displaying big numbers of images.

                      Share: IPyPlot is a small python package offering fast and efficient plotting of images inside Python Notebooks cells. It's using IPython with HTML for faster, richer and more interactive way of displaying big numbers of images. Displaying big numbers of images with Python in Notebooks always was a big pain for me as I always used matplotlib for that task and never have I even considered if it can

                        GitHub - karolzak/ipyplot: IPyPlot is a small python package offering fast and efficient plotting of images inside Python Notebooks. It's using IPython with HTML for faster, richer and more interactive way of displaying big numbers of images.
                      • Gemini Advancedでデータ分析をやってみた - GMOインターネットグループ グループ研究開発本部

                        TL;DR Geminiの有料プランGemini Advancedでは、5/14から100万トークンもの入力に対応したGemini 1.5 Proを提供開始、更に5/21からスプレッドシートをアップロードしてのデータ分析や可視化が可能になりました。これはPythonのコードを生成して実行するする機能です。 データ分析の性能としてはGemini AdvancedはChatGPT-4oとほぼ同等の性能でどんぐりの背比べ甲乙が付け難いです。Geminiの場合、Google Sheetsなどと連携でき、データの取り込みやエクスポートが容易です。一方のChatGPTは、可視化したグラフがより見やすい印象です。 しかし、Gemini AdvancedもChatGPT-4oも指示が曖昧では適切な集計ができないなど、データサイエンティストの視点から見ると、生成AIに任せきりでは不安な点が多く見受けられます

                          Gemini Advancedでデータ分析をやってみた - GMOインターネットグループ グループ研究開発本部
                        • Julia 1.6: what has changed since Julia 1.0?

                          Julia 1.0 came out well over 2 years ago. Since then a lot has changed and a lot hasn’t. Julia 1.0 was a commitment to no breaking changes, but that is not to say no new features have been added to the language. Julia 1.6 is a huge release and it is coming out relatively soon. RC-1 was released recently. I suspect we have at least a few more weeks before the final release. The Julia Core team take

                          • カモにならないアルゴリズム取引:取引コストと戦略入門編 - GMOインターネットグループ グループ研究開発本部

                            こんにちは。次世代システム研究室のK.S.(女性、外国人)です。 みなさん、コロナ禍の生活に慣れてきて、いかがですか?。色々な感想があると思います。「もううんざり!」「お家時間それなりに楽しんでいるよ」「アフターコロナはどうなる?」等。世界は、コロナ危機から回復しつつあり、2022年に入って米国の利上げなどの金融政策で、経済活動も段階的に再開されてきました。一方、刻々と変化する世界情勢のもと、金融市場は乱高下(相場が短期間で上がり下がりの変化が激しく繰り返し)しやすい状況になっています。 それゆえ、今こそ、投資の好機と考え、小遣い稼ぎができればいいなあとふと思ったりしませんか。ただ、運に頼るのではなく、乱高下の状況でもきちんとリスク管理した上で、安定的に、儲けられるようにすることが必要です。そのため、基本知識から少しずつ理解しながら、楽しく取引(トレーディング)できればと思っています。 と

                              カモにならないアルゴリズム取引:取引コストと戦略入門編 - GMOインターネットグループ グループ研究開発本部
                            • Overview — Flent: The FLExible Network Tester

                              Flent is a network benchmarking tool which allows you to: Easily run network tests composing multiple well-known benchmarking tools into aggregate, repeatable test runs. Explore your test data through the interactive GUI and extensive plotting capabilities. Combine and aggregate data series and produce publication quality graphs. Capture metadata from local and remote hosts and store it along with

                              • GitHub - taishi-i/awesome-ChatGPT-repositories: A curated list of resources dedicated to open source GitHub repositories related to ChatGPT and OpenAI API

                                awesome-chatgpt-api - Curated list of apps and tools that not only use the new ChatGPT API, but also allow users to configure their own API keys, enabling free and on-demand usage of their own quota. awesome-chatgpt-prompts - This repo includes ChatGPT prompt curation to use ChatGPT better. awesome-chatgpt - Curated list of awesome tools, demos, docs for ChatGPT and GPT-3 awesome-totally-open-chat

                                  GitHub - taishi-i/awesome-ChatGPT-repositories: A curated list of resources dedicated to open source GitHub repositories related to ChatGPT and OpenAI API
                                • Pandas DataFrame Visualization Tools - Practical Business Python

                                  Introduction I have talked quite a bit about how pandas is a great alternative to Excel for many tasks. One of Excel’s benefits is that it offers an intuitive and powerful graphical interface for viewing your data. In contrast, pandas + a Jupyter notebook offers a lot of programmatic power but limited abilities to graphically display and manipulate a DataFrame view. There are several tools in the

                                    Pandas DataFrame Visualization Tools - Practical Business Python
                                  • Nx (Numerical Elixir) is now publicly available - Dashbit Blog

                                    Sean Moriarity and I are glad to announce that the project we have been working on for the last 3 months, Nx, is finally publicly available on GitHub. Our goal with Nx is to provide the foundation for Numerical Elixir. In this blog post, I am going to outline the work we have done so far, some of the design decisions, and what we are planning to explore next. If you are looking for other resources

                                    • YOLOv7を使って自作データセットで物体検出してみた | DevelopersIO

                                      こんちには。 データアナリティクス事業本部機械学習チームの中村です。 YOLOv7の論文が2022-07-06にarXivに公開されたようですね🎉🎉🎉 ソースコードもGitHubで公開されています。 せっかくなので今回は、以下の記事で紹介した自作データのトレーニングを、YOLOv7を使ってやってみたいと思います。 YOLOv7の概要 YOLOv7は、YOLOv4、Scaled-YOLOv4, YOLORと同じグループが開発した最新の物体検出処理です。 MS COCOデータセットでは既存手法を大きく上回る結果と報告されています。 ざっと見たところポイントは以下となっています。 concatenateモデルのアーキテクチャを進化させたELANおよびE-ELANを使用 concatenateモデルはDenseNetやCSPVoVNetなどのようにaddの代わりにconcatするモデルのこと

                                        YOLOv7を使って自作データセットで物体検出してみた | DevelopersIO
                                      • Fundamentals of Matplotlib Library for Data Science

                                        This article will discuss the Matplotlib library,” in the data scientist’s toolbox on Python. Matplotlib is a library very commonly used by data scientists…. In addition to “Matplotlib,” “Pandas,” and “NumPy” are important parts of the data scientist’s toolbox. Introduction to MatplotlibIs it possible to know your data’s trend or pattern without visualization? In my view, the answer is definitely

                                          Fundamentals of Matplotlib Library for Data Science
                                        • GitHub - ComfyUI-Workflow/awesome-comfyui: A collection of awesome custom nodes for ComfyUI

                                          ComfyUI-Gemini_Flash_2.0_Exp (⭐+172): A ComfyUI custom node that integrates Google's Gemini Flash 2.0 Experimental model, enabling multimodal analysis of text, images, video frames, and audio directly within ComfyUI workflows. ComfyUI-ACE_Plus (⭐+115): Custom nodes for various visual generation and editing tasks using ACE_Plus FFT Model. ComfyUI-Manager (⭐+113): ComfyUI-Manager itself is also a cu

                                            GitHub - ComfyUI-Workflow/awesome-comfyui: A collection of awesome custom nodes for ComfyUI
                                          1