並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 24 件 / 24件

新着順 人気順

sqlite3 python select from tableの検索結果1 - 24 件 / 24件

  • なぜシェルスクリプトで高度なデータ管理にSQLiteを使うべきなのか? ~ UNIX/POSIXコマンドの欠点をSQLで解決する

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 「利用者は数十億人!? SQLiteはどこが凄いデータベース管理システムなのか調べてみた」の続きです。 はじめに 複雑な構造のデータを扱うのであればシェルスクリプトや Unix (POSIX) コマンドでデータ管理を行うのは避けるべきだと思います。解決不可能な問題が多いからです。しかしそれでも何かしらの理由でやろうと考える(やらなければいけない)のであれば SQLite を使うのをおすすめします。シェルスクリプトや Unix コマンドは行単位の単純なテキストデータをシーケンシャルにデータ処理するのが前提となっており、改行や空白が含まれる

      なぜシェルスクリプトで高度なデータ管理にSQLiteを使うべきなのか? ~ UNIX/POSIXコマンドの欠点をSQLで解決する
    • 【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい

      はじめに 対象イベント 読み方、使い方 Remote Code Execution(RCE) 親ディレクトリ指定によるopen_basedirのバイパス PHP-FPMのTCPソケット接続によるopen_basedirとdisable_functionsのバイパス JavaのRuntime.execでシェルを実行 Cross-Site Scripting(XSS) nginx環境でHTTPステータスコードが操作できる場合にCSPヘッダーを無効化 GoogleのClosureLibraryサニタイザーのXSS脆弱性 WebのProxy機能を介したService Workerの登録 括弧を使わないXSS /記号を使用せずに遷移先URLを指定 SOME(Same Origin Method Execution)を利用してdocument.writeを順次実行 SQL Injection MySQ

        【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい
      • SQLiteでベクトル検索ができる拡張sqlite-vssを試す|mah_lab / 西見 公宏

        SQLiteでベクトル検索を可能にするsqlite-vssそんなポータブルで便利なSQLiteですが、そのSQLiteでベクトル検索ができるとなるとより夢が広がります。 SQLite自体はファイルベースなので、あらかじめベクトルデータを設定したSQLiteデータベースファイルをアプリに組み込んで配布しても良いわけです。そうすればデータベースサーバを用意しなくて済む分コストも圧縮されますし、組み込みなのでアプリからは軽量に動作します。 ホスティングする場合でもFly.ioのようにボリュームイメージを利用できるPaaSを利用すれば、問題なく運用が可能です。 前置きが長くなりましたが、このような夢を叶えてくれる拡張がsqlite-vssです。ベクトル検索はFaissベースで実装されています。 とっても良さげではあるのですが、実際に組み込んでみた場合のコード例が見つからなかったので、手を動かして試

          SQLiteでベクトル検索ができる拡張sqlite-vssを試す|mah_lab / 西見 公宏
        • Chromium にコントリビュートするための周辺知識 | blog.jxck.io

          Intro Chromium にコントリビュートするためには、ソースコードを理解する以外にも、もろもろ必要な周辺知識がある。 ドキュメントはかなり整備されている方ではあるが、そのドキュメントにたどり着くのが難しい場合もある。 レビュアーなどが親切に教えてくれるものをローカルにメモしているが、それも散らばってきたため、ここにまとめることにする。 まずは初期状態で公開するが、どんどん更新していき、長くなっても分割しないで追記を繰り返そうと考えている。 関連サイト 始めて取り組もうとすると、まずどこを見ればわからないところから始まる。 似たようないくつかのサイトがあり、使い分けがされているからだ。 code search https://source.chromium.org/chromium/chromium/src コードをインタラクティブに検索するためのサイト Workspace 風の U

            Chromium にコントリビュートするための周辺知識 | blog.jxck.io
          • ISUCON12 予選問題の解説と講評 : ISUCON公式Blog

            ISUCONとはLINEヤフー株式会社が運営窓口となって開催している、お題となるWebサービスを決められたレギュレーションの中で限界まで高速化を図るチューニングバトルです ISUCON12 予選問題の解説と講評 予選問題作問チーム、面白法人カヤックの fujiwara です。 ISUCON12予選に参加された皆様、ありがとうございました。おかげさまで大きなトラブルもなく予選を終えられて安心しています。 このエントリでは、予選に出題された問題の解説と、皆様の感想エントリなどを拝見した結果を踏まえて講評します。 当日の競技内容とアプリケーションの仕様については ISUCON12 予選当日マニュアル、ISUPORTSアプリケーションマニュアル を参照してください。 予選問題のリポジトリはこちらGitHub - isucon/isucon12-qualify 作問チームによる事前解答については I

              ISUCON12 予選問題の解説と講評 : ISUCON公式Blog
            • Claude Codeにセキュリティ診断をさせてみた

              はじめに こんにちは、Claude Codeを使っていますか? 私の観測範囲内でもClaude Codeを使っている人がどんどん増えてきています。 他のAIコーディングエージェントから乗り換えている人も結構な人数いそうです。 今回の記事ではClaude Codeに脆弱性の診断をさせてみました。 診断の対象としたのは以前の記事でClaude Codeに作ってもらった以下のAIチャットボットのアプリケーションです。 リポジトリはこちら 記事はこちら 実践 診断開始 今回はClaude Codeで以下のようなプロンプトで指示を出しました。 > あなたは経験豊富なセキュリティ専門家(ホワイトハッカー)として行動してください。 **要求する分析内容:** 1. **脆弱性の特定** - 発見した脆弱性の種類と場所を明確に指摘 - 各脆弱性のCVE分類またはOWASP Top 10での位置づけ 2.

                Claude Codeにセキュリティ診断をさせてみた
              • #!/usr/bin/env docker run

                Dockerfile `�3 �� � � �� #!/usr/bin/env -S bash -c "docker run -p 8080:8080 -it --rm \$(docker build --progress plain -f \$0 . 2>&1 | tee /dev/stderr | grep -oP 'sha256:[0-9a-f]*')" # syntax = docker/dockerfile:1.4.0 FROM node:20 WORKDIR /root RUN npm install sqlite3 RUN <<EOF cat >/root/schema.sql CREATE TABLE IF NOT EXISTS clicks ( id INTEGER PRIMARY KEY AUTOINCREMENT, time INTEGER NOT NULL ); E

                  #!/usr/bin/env docker run
                • 最近話題のVector Searchを実現するFaissって何? #1|masuidrive

                  Faissを使ったFAQ検索システムの構築Facebookが開発した効率的な近似最近傍検索ライブラリFaissを使用することで、FAQ検索システムを構築することができます。 まずは、SQLiteデータベースを準備し、FAQの本文とそのIDを保存します。次に、sentence-transformersを使用して各FAQの本文の埋め込みベクトルを計算し、そのベクトルをFaissインデックスに追加します。新しいクエリが入力されたときは、sentence-transformersを使用してクエリの埋め込みベクトルを計算し、Faissインデックスを使用して、クエリの埋め込みベクトルに最も類似したFAQの埋め込みベクトルを検索します。 検索結果は、FAQのIDのリストとして返され、最後に返されたIDを使用して、SQLiteデータベースから関連するFAQの本文を取得し、検索結果としてユーザーに表示されま

                    最近話題のVector Searchを実現するFaissって何? #1|masuidrive
                  • 【Python】SQLite で日本語を全文検索するコード例【N-Gram, FTS4/FTS5】

                    日本語の全文検索ぜんぶんけんさく (full-text search, FTS) を、高速に実行する Python コード例です。 Python の標準モジュール sqlite3 を使用しました。 sqlite3 から、SQLiteエスキューライト の全文検索 (FTSエフティーエス) を使ってみました。 試したのは、FTS4エフティーエスフォー と FTS5エフティーエスファイブ の2種類です。 ところで、SQLite の読み方は色々ありました。YouTube では、エスキューライト、エスキューエライト、スィクライト、スィクエライト、などの発音を聞きました。 全文検索の使い方(FTS の使い方)ですが、テキストを N-Gram にして、FTS4 か FTS5 の仮想テーブルに INSERT するだけでした。 (2022年2月5日 追記)MeCab の使い方も書きました。 MeCab で

                      【Python】SQLite で日本語を全文検索するコード例【N-Gram, FTS4/FTS5】
                    • Pythonで簡単DB - Qiita

                      pythonでsqlite3データベースを簡単に使う SQLとかわかんないよみたいな方だってデータベースに触れたら世界が変わるかも知れない。わかんないけど。 ほとんどの場合ざっくりと簡単なクエリ発行で事足りる場合が多いので、SQLに詳しい方だって多分楽できるかも。 DBクラスとDBwrapperクラス ほぼ素に近い状態でsqliteを使うDBクラスと、そのDBクラスを継承して簡単に使えるファンクションを追加したのがDBwrapperクラス。 DBwrapperクラスはDBクラスのファンクションを全部使えるのでとりあえずDBwrapperクラスを取り込んで使えば便利。 たとえば dict型でデータを作って set とか読んでやればDBにデータを挿入・更新できたり get をforで回してやれば1行づつデータが取り出せる。 データの件数も count で取り出せるぞ、手軽だね。 詳しくは以下の

                        Pythonで簡単DB - Qiita
                      • iOS Hacking - A Beginner’s Guide to Hacking iOS Apps [2022 Edition]

                        My first post will be about iOS Hacking, a topic I’m currently working on, so this will be a kind of gathering of all information I have found in my research. It must be noted that I won’t be using any MacOS tools, since the computer used for this task will be a Linux host, specifically a Debian-based distribution, in this case, Kali Linux. I will also be using ‘checkra1n’ for the device jailbreak

                        • Pythonでいいね機能を実装する方法 - Python転職初心者向けエンジニアリングブログ

                          ソーシャルメディアやウェブアプリケーションでは、ユーザーがコンテンツに対して「いいね」や「いいね」ボタンを押す機能が一般的です。これはユーザーエンゲージメントを向上させ、コンテンツの評価や共有を促進するための重要な機能です。今回は、Pythonを使用してシンプルないいね機能を実装する方法について説明します。 いいね機能の基本的な仕組み いいね機能の基本的な仕組みは、ユーザーがコンテンツに対していいねを押すと、その情報がサーバーに送信され、データベースに反映されるというものです。具体的には、各コンテンツに一意なIDがあり、ユーザーがボタンを押すとそのIDとユーザーIDがデータベースに保存されます。 データベースの設計 まず、いいね情報を格納するためのデータベースを設計します。以下は、SQLiteを使用した簡単な例です。 import sqlite3 conn = sqlite3.connec

                            Pythonでいいね機能を実装する方法 - Python転職初心者向けエンジニアリングブログ
                          • Supercharge SQLite with Ruby Functions

                            An interesting twist in my recent usage of SQLite was the fact that I noticed my research scripts and the database intertwine more. SQLite is unique in that it really lives in-process, unlike standalone database servers. There is a feature to that which does not get used very frequently, but can be indispensable in some situations. By the way, the talk about the system that made me me to explore S

                            • Logging C Function Calls

                              May 19th, 2022 @ justine's web page Logging C Functions One of my favorite features of the Cosmopolitan Libc runtime is its --ftrace flag that logs C function calls. It's the simplest system for debugging programs I've ever used and it surprises me that I found no evidence of someone having invented it before. Here's one of its most important use cases. Have you ever had you debugger stupified by

                              • LLMs and SQL

                                Francisco Ingham and Jon Luo are two of the community members leading the change on the SQL integrations. We’re really excited to write this blog post with them going over all the tips and tricks they’ve learned doing so. We’re even more excited to announce that we’ll be doing an hour long webinar with them to discuss these learnings and field other related questions. This webinar will be on March

                                  LLMs and SQL
                                • StreamlitでEDINETから有価証券報告書をダウンロードして分析するWEBアプリをサクっとつくろう

                                  参考文献 ※1 EDINET API機能追加に係る利用者向け説明会資料 ※2 EDINET API仕様書 Version2 ①会社名の選択 まず会社一覧及び、会社のEDINETコードが必要になってきます。 これについてはAPIで取得する方法はなく公式サイトからZIPを落としてくるか ここからプログラム的に自動でダウンロードする必要があります。 今回は手動であらかじめダウンロードしたものを使います。 公式サイトからダウンロードすると毎回リンクが変わる、上記の直接リンクだと固定という謎仕様のようです(ドキュメントにもそうかいてある) ZIPを展開するとShift-JISのCSVが手に入ります。文字コードに注意しましょう。EDINETからダウンロードするCSVはUTF16なのにこっちはShiftJISなのです。 中身は上記のようなもになっています。 末尾に0がついているものの証券コードも入ってい

                                    StreamlitでEDINETから有価証券報告書をダウンロードして分析するWEBアプリをサクっとつくろう
                                  • Bashing JSON into Shape with SQLite

                                    Published on 2022-01-04, 1640 words, 6 minutes to read It is clear that most of the world has decided that they want to use JSON for their public-facing API endpoints. However, most of the time you will need to deal with storage engines that don't deal with JSON very well. This can be confusing to deal with because you need to fit a square peg into a round hole. However, SQLite added JSON function

                                    • django-cteと共通テーブル式(CTE)を用いた再帰クエリにより、階層構造を持つテーブルからデータを取得する - メモ的な思考的な

                                      これは Django Advent Calendar 2020 - Qiita 兼 JSL(日本システム技研) Advent Calendar 2020 - Qiita の12/16分の記事です。 Djangoと共通テーブル式(Common Table Expression、CTE)を用いた再帰クエリを使って、階層構造を持つテーブルからデータを取得したいことがありました。 ただ、現在のDjangoでは「共通テーブル式の再帰クエリ」がサポートされていません。 #28919 (Add support for Common Table Expression (CTE) queries) – Django 生SQLを書いても良いのですが、IDEのサポートがほしかったのでライブラリを探したところ、 django-cte がありました。 dimagi/django-cte: Common Table

                                        django-cteと共通テーブル式(CTE)を用いた再帰クエリにより、階層構造を持つテーブルからデータを取得する - メモ的な思考的な
                                      • Python初心者がFastAPIでTodo(API)を作ってみた - Qiita

                                        Python初心者がFastAPIでTodo(API)を作ってみた 前提 Python 3.9 FastAPI 0.88 sqlmodel sqlite3 開発環境 MacBook + VScode FastAPIについて 特徴 公式より引用 高速: NodeJS や Go 並みのとても高いパフォーマンス (Starlette と Pydantic のおかげです)。 最も高速な Python フレームワークの一つです. 高速なコーディング: 開発速度を約 200%~300%向上させます。 少ないバグ: 開発者起因のヒューマンエラーを約 40%削減します。 直感的: 素晴らしいエディタのサポートや オートコンプリート。 デバッグ時間を削減します。 簡単: 簡単に利用、習得できるようにデザインされています。ドキュメントを読む時間を削減します。 短い: コードの重複を最小限にしています。各パラメ

                                          Python初心者がFastAPIでTodo(API)を作ってみた - Qiita
                                        • PCのカメラでISBNコードを読み取りExcelに書籍リストを作る

                                          operationはsearchRetrieveで固定です。 queryにはURLエンコードした検索クエリの文字列をセットします。requestsを使えば勝手にエンコードしてくれるので検索文字列そのままで大丈夫です。今回はISBNで検索するのでisbn=”{isbn}”で関数の引数として渡すISBNコードを埋め込みます。ISBN以外にも検索できる項目はいっぱいあるので、興味がある方はリファレンスを読んでみてください。 recordPackingはレスポンスのうち書籍情報の部分をURLエンコードした文字列にするか書籍情報以外のXMLにそのままXMLとして内包させるかを指定できます。省略した場合は前者です。XMLにしておいた方がデータを取り出すのが楽なのでxmlにしています。 レスポンスのXMLは次のようなものです。 <?xml version="1.0" encoding="UTF-8"?>

                                            PCのカメラでISBNコードを読み取りExcelに書籍リストを作る
                                          • SQLite3入門 | Python学習講座

                                            CREATE文とINSERT文のサンプル それでは接続からSQL実行までのサンプルです。以下のサンプルはカレントディレクトリ直下にexample.dbというdbファイルを作成し、CREATE文でテーブルを作成後、INSERT文でデータを挿入してみます。 import sqlite3 # 接続。なければDBを作成する。 conn = sqlite3.connect('example.db') # カーソルを取得 c = conn.cursor() # テーブルを作成 c.execute('CREATE TABLE articles (id int, title varchar(1024), body text, created datetime)') # Insert実行 c.execute("INSERT INTO articles VALUES (1,'今朝のおかず','魚を食べました'

                                            • PythonとSQLの連携: データベース操作の新しい次元 - Python転職初心者向けエンジニアリングブログ

                                              **** SQL(Structured Query Language)はデータベース管理システムで広く使用される言語であり、Pythonとの連携により柔軟で効率的なデータベース操作が可能です。今回は、PythonからSQLを利用してデータベースに接続し、クエリを実行する手法について具体的なコードとともに解説します。 1. PythonからSQLiteデータベースに接続する 最初に、PythonからSQLiteデータベースに接続する例を見てみましょう。SQLiteは軽量でシンプルなデータベースエンジンであり、Python標準ライブラリにも含まれています。 Pythonのコード import sqlite3 # SQLiteデータベースに接続 conn = sqlite3.connect('sample.db') # カーソルを取得 cursor = conn.cursor() # データベー

                                                PythonとSQLの連携: データベース操作の新しい次元 - Python転職初心者向けエンジニアリングブログ
                                              • Python+Peewee ORM+SQLiteで1億レコード最速insertチャレンジ | さかな前線

                                                イワシの大群が特に大規模になったとき、それをサーディンランと呼び、個体数は数千万とも数億とも数十億ともいわれるのだそうです。そのような生物量がそれほど密集したとき酸素濃度は足りるんだろうかと心配です。 さて、データ処理の一環で億オーダーのレコード数(ディスク上で~100GB)をもつSQLiteテーブルを構築しようということになり、データ自体は生CSVがある状態でこれをなるべく短時間でDBに流し込むという雑なチャレンジをしてみたので、雑な記録をまとめておきました。 できるだけPythonで閉じさせたかったため、C++などで書くという選択肢はなし。 またDBサイズがサイズなのでインメモリではなくファイルに吐き出します。 またスキーマ定義をさくっとやりたい・DB構築後の扱いを楽にしたいということで、PythonベースのORM Peeweeを使用することにしています。なおPeeweeについて詳細は

                                                • ipblock - 超小型fail2ban - Qiita

                                                  の類ですね。出現頻度も高く、postfixに負荷がかかるし、第一気持ち悪いので、自動的にblockする方法を考えました。 これは、Linuxサーバーで不正なパケットを検知し、自動的にブロックするPythonスクリプトです。syslogのログファイルを監視し、指定された正規表現パターンにマッチする不正なパケットをブロックするために、iptablesを使用します。また、特定のIPアドレスがブロックされている期間を追跡するために、sqlite3を使用します。 このスクリプトを使用することで、不正なパケットを自動的にブロックし、サーバーの負荷を軽減できます。また、手動でIPアドレスをブロックする必要がなく、セキュリティの向上に役立ちます。 fail2banという類似するシステムがあります。ipblock.pyはfail2banのように複数のlogを監視しません。何回か、その攻撃があったら、処断する

                                                    ipblock - 超小型fail2ban - Qiita
                                                  1