タグ

RAGに関するserihiroのブックマーク (11)

  • あらゆる分野のRAGの性能を評価する手法RAGEval

    導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 記事では、ドメインに特化したRAGの性能を検証するためのフレームワーク、RAGEvalについて解説します。 サマリー RAGの手法は日夜研究され、新しい手法は次々に提案されています。RAGに限った話ではないですが、システムの性能を計測するには評価するための方法が重要です。そしてRAGの性能を計測するにはドキュメントと質問、そして正解ドキュメントと正答のセットが必要になります。 RAGEvalは、これらの計測に必要なデータをLLMとそのドメインに使用するサンプルのドキュメントを用いて自動的に生成する事が可能となっています。 問題意識 RAGのテストデータを用意するのは大変 RAGの評価には必ず評価するため

    あらゆる分野のRAGの性能を評価する手法RAGEval
    serihiro
    serihiro 2024/10/25
  • RAG入門: 精度改善のための手法28選 - Qiita

    RAGの精度改善するために何があるかを学びました。基系のNaive RAGを知っている人向けの記事です。 方法が多すぎるので、Youtubeの「RAG From Scratch」を中心に少し整理してみました。LangChainをよく使っているので、LangChain出典が多いです。 全体像 まずは、RAGの全体像。Indexingが同じ流れにあるのが少しわかりにくいのですが、実行タイミングとしてはRAGの前準備としてやっておきます。 画像出典: RAG from scratch: Overview もう少し粒度を細かくした図です。 画像出典: RAG from scratch: Overview 表形式で分類します。Generationだけ少し特殊です。 大分類 中分類 内容

    RAG入門: 精度改善のための手法28選 - Qiita
  • RAGの回答を自動評価する手法(LINEヤフーのSeekAIでの事例)

    実際の評価結果 そして、SeekAI 内で実際に評価した結果がこちらです。 ※ 評価はAが最高で、Eに近づくほど低くなります。モデル名は意図的に伏せております。 一般的に性能が高いと言われるモデルほど、良い結果になっているのがわかります(Cは現在の評価基準では出現しづらく、全モデルで0件となりました)。結論としては、やはり良い結果を得るためには、高性能なモデルを使用した方が良いということがわかります。ただ、SeekAIは(3)の頃に初期の評価を実施していることから、(2)や(5)の高速型を使用することで、コストを抑えつつある程度精度を持った回答を得ることもできることもわかります。 ※ こちらの評価結果は記事掲載を目的として、公開されたドキュメントを使用して自動評価を実施した結果です。また、モデルの評価はパラメータやプロンプトの最適化によって変わることがあるため、LLMの性能を厳密に評価す

    RAGの回答を自動評価する手法(LINEヤフーのSeekAIでの事例)
    serihiro
    serihiro 2024/08/20
  • LLMのRAGアプリケーションにおけるオブザーバビリティを向上するツール「Phoenix」の紹介 - Assured Tech Blog

    LLMのRAGアプリケーションにおけるオブザーバビリティを向上するツール「Phoenix」の紹介 始めに こんにちは、エンジニアの大橋です。 LLMを用いたRAG(Retrieval-Augmented Generation)アプリケーションの開発において、精度向上のための評価方法に悩まれている方も多いのではないでしょうか。 今回、AssuredではRAGアプリケーションの評価にPhoenixというツールを導入してみました。Phoenixを利用することで、LLMに何を入力しどんな出力を得られたのかを可視化し、品質を改善させるサイクルを素早く行えるようになり、RAGアプリケーションの精度向上に非常に有用だったので、その活用方法をご紹介したいと思います。 実はPhoenixを使い始める前に、DeepEvalというLLM評価ライブラリのみを利用して、LLMの生成結果の評価を行おうとした時期があり

    LLMのRAGアプリケーションにおけるオブザーバビリティを向上するツール「Phoenix」の紹介 - Assured Tech Blog
    serihiro
    serihiro 2024/08/20
  • Code the Cloud

  • GitHub - langchain-ai/rag-from-scratch

    LLMs are trained on a large but fixed corpus of data, limiting their ability to reason about private or recent information. Fine-tuning is one way to mitigate this, but is often not well-suited for facutal recall and can be costly. Retrieval augmented generation (RAG) has emerged as a popular and powerful mechanism to expand an LLM's knowledge base, using documents retrieved from an external data

    GitHub - langchain-ai/rag-from-scratch
  • Doing RAG? Vector search is *not* enough

    I'm concerned by the number of times I've heard, "oh, we can do RAG with retriever X, here's the vector search query." Yes, your retriever for a RAG flow should definitely support vector search, since that will let you find documents with similar semantics to a user's query, but vector search is not enough. Your retriever should support a full hybrid search, meaning that it can perform both a vect

  • 社内文書検索&QAシステムの RAG ではないところ - Algomatic Tech Blog

    こんにちは。NEO(x) 機械学習エンジニアの宮脇(@catshun_)です。 RAG システムの開発、いざ業務に統合するとなると結構大変ですよね。 構築してみたがユーザ数が伸びず、、なんてことはよくあると思います。 実際こんな記事も話題になりましたね。 記事では、コラムとして RAG システムの設計で考慮したい点を自戒を込めて記述したいと思います。 誤っている記述等もあると思いますが、記事を読んだ方の議論のネタになってくれれば幸いです。 また Retrieval-based LM の技術的な話は、以下で触れておりますので併せてご覧ください。 RAG とは RAG (Retrieval-Augmented Generation) とは、社内文書・長期記憶に該当する対話履歴・API 仕様書などの 外部知識資源 を、言語モデルが扱えるよう入力系列に挿入する手法です。もともと Lewis+'

    社内文書検索&QAシステムの RAG ではないところ - Algomatic Tech Blog
  • RAGについて情報をまとめる

    RAGについてまとめ RAG情報が溢れているので整理しています。 RAGの概要・入門 RAGの性能改善のテクニック まとめ 手法 RAG関係の論文 RAG関係のサーベイ論文 画像はRetrieval-Augmented Generation for Large Language Models: A Surveyより引用 時系列のまとめ まとめのGitHubリポジトリ サーベイ論文の解説記事 RAG(検索拡張生成)包括的な論文をわかりやすく解説 コサイン類似度が当に適しているのかをといかける論文 retrieval-augmented thoughts(RAT)という手法について書かれた論文 RAGのエラーの分類に関する論文 HyDEという手法の論文 HyDEのノートブック メタ認知をRAGに適用 Self RAG Self RAGノートブック NVIDIA Order-Preserve

    RAGについて情報をまとめる
  • RAGの実案件に取り組んできた今までの知見をまとめてみた | DevelopersIO

    はじめに 新規事業部 生成AIチーム 山です。 ChatGPTOpenAI API)をはじめとしたAIの言語モデル(Large Language Model:以下、LLM)を使用して、チャットボットを構築するケースが増えています。通常、LLMが学習したときのデータに含まれている内容以外に関する質問には回答ができません。そのため、例えば社内システムに関するチャットボットを作成しようとしても、素のLLMでは質問に対してわからないという回答や異なる知識に基づいた回答が(当然ながら)得られてしまいます。 この問題を解決する方法として、Retrieval Augmented Generation(以下、RAG)という手法がよく使用されます。RAGでは、ユーザからの質問に回答するために必要そうな内容が書かれた文章を検索し、その文章をLLMへの入力(プロンプト)に付け加えて渡すことで、ユーザが欲しい

    RAGの実案件に取り組んできた今までの知見をまとめてみた | DevelopersIO
  • Retrieval-Augmented Generation(RAG)とは? | IBM ソリューション ブログ

    主要カテゴリー IBM Cloud Blog IBM Data and AI IBM Consulting IBM Partner Ecosystem IBM Sustainability Software Client Engineering IBM テクニカル・サポート 社員が語る「キャリアとIBM」 IBM Cloud Blog IBM Cloud News IBM クラウド・ビジョン IBM Cloud アップデート情報 IBM Cloud チュートリアル IBM Data and AI IBM Watson Blog アナリティクス Data Science and AI SPSS Modeler ヒモトク Db2 オートメーション IBM Consulting デジタル変革(DX) アプリの開発とモダナイゼーション 製品/サービス ソフトウェア ハードウェア サービス 無料評価

    Retrieval-Augmented Generation(RAG)とは? | IBM ソリューション ブログ
  • 1