タグ

ブックマーク / qiita.com/icoxfog417 (8)

  • 転移学習:機械学習の次のフロンティアへの招待 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 機械学習を実務で使う場合、「ではお客様、ラベルデータを・・・」と申し出て色よい返事が返ってくることはあまりありません。また、例えば自動運転車を作るときに、データが足りないからその辺流してくるか、お前ボンネットに立ってデータとってな、とするのは大変です。 NICO Touches the Walls 『まっすぐなうた』 より そこで必要になってくるのが転移学習です。 転移学習とは、端的に言えばある領域で学習させたモデルを、別の領域に適応させる技術です。具体的には、広くデータが手に入る領域で学習させたモデルを少ないデータしかない領域に適応さ

    転移学習:機械学習の次のフロンティアへの招待 - Qiita
  • ゼロからDeepまで学ぶ強化学習 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ロボットから自動運転車、はては囲碁・将棋といったゲームまで、昨今多くの「AI」が世間をにぎわせています。 その中のキーワードとして、「強化学習」というものがあります。そうした意味では、数ある機械学習の手法の中で最も注目されている(そして誇張されている・・・)手法ともいえるかもしれません。 今回はその強化学習という手法について、基礎から最近目覚ましい精度を出しているDeep Q-learning(いわゆるドキュン、DQNです)まで、その発展の流れと仕組みについて解説をしていきたいと思います。 記事の内容をベースに、ハンズオンイベントを開

    ゼロからDeepまで学ぶ強化学習 - Qiita
  • Convolutional Neural Networkとは何なのか - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 機械学習の世界において、画像といえばConvolutional Neural Network(以下CNN)というのは、うどんといえば香川くらい当たり前のこととして認識されています。しかし、そのCNNとは何なのか、という解説は意外と少なかったりします。 そこで、記事ではCNNについてその仕組みとメリットの解説を行っていきたいと思います。 なお、参考文献にも記載の通り解説の内容はStanfordのCNNの講座をベースにしています。こちらの講座はNeural NetworkからCNN、はてはTensorflowによる実装まで解説される予定な

    Convolutional Neural Networkとは何なのか - Qiita
  • 画像処理の数式を見て石になった時のための、金の針 - Qiita

    $k$は定数で、だいたい0.04~0.06くらいです。Rの値によって以下のように分類できます。 Rが大きい: corner Rが小さい: flat R < 0: edge 図にすると、以下のようになります。 CSE/EE486 Computer Vision I, Lecture 06, Corner Detection, p22 これで手早くcornerを検出できるようになりました。ここで、corner検出についてまとめておきます。 cornerは複数のedgeが集まる箇所と定義できる 変化量をまとめた行列の固有ベクトルからedgeの向き、固有値の大きさから変化量の大きさ(edgeらしさ)がわかる 2つの固有値の値を基に、edge、corner、flatを判定できる 固有値の計算は手間であるため、判定式を利用し計算を簡略化する なお、Harrisはedgeの向きである固有ベクトルを考慮す

    画像処理の数式を見て石になった時のための、金の針 - Qiita
  • Chainerで始めるニューラルネットワーク - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Chainerは、Preferred Networksが開発したニューラルネットワークを実装するためのライブラリです。その特徴としては、以下のような点があります(ホームページより)。 高速: CUDAをサポートし、GPUを利用した高速な計算が可能 柔軟: 柔軟な記法により、畳み込み、リカレントなど、様々なタイプのニューラルネットを実装可能 直観的: ネットワーク構成を直観的に記述できる 個人的には、さらに一つ「インストールが簡単」というのも挙げたいと思います。 ディープラーニング系のフレームワークはどれもインストールが面倒なものが多いの

    Chainerで始めるニューラルネットワーク - Qiita
  • Pythonを書き始める前に見るべきTips - Qiita

    Pythonを使ってこの方さまざまな点につまずいたが、ここではそんなトラップを回避して快適なPython Lifeを送っていただくべく、書き始める前に知っておけばよかったというTipsをまとめておく。 Python2系と3系について Pythonには2系と3系があり、3系では後方互換性に影響のある変更が入れられている。つまり、Python3のコードはPython2では動かないことがある(逆もしかり)。 Python3ではPython2における様々な点が改善されており、今から使うなら最新版のPython3で行うのが基だ(下記でも、Python3で改善されるものは明記するようにした)。何より、Python2は2020年1月1日をもってサポートが終了した。よって今からPython2を使う理由はない。未だにPython2を使う者は、小学生にもディスられる。 しかし、世の中にはまだPython3に

    Pythonを書き始める前に見るべきTips - Qiita
  • TensorFlowを算数で理解する - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? TensorFlowは主に機械学習、特に多層ニューラルネットワーク(ディープラーニング)を実装するためのライブラリになりますが、その基的な仕組みを理解するのにそうした難しい話は特に必要ありません。 記事では、TensorFlowの仕組みを、算数程度の簡単な計算をベースに紐解いていきたいと思います。 TensorFlowの特徴 初めに、TensorFlowの特徴についてまとめておきたいと思います。 TensorFlowは、その名前の通りTensor(多次元配列、行列などに相当)のFlow(計算処理)を記述するためのツールです。その特徴

    TensorFlowを算数で理解する - Qiita
  • お前のAngular.jsはもうMVCではない。と言われないためのTutorial - Qiita

    JavaScriptフレームワークに興味あるし、Angular.jsを使ってみようかな・・・ そんな純真無垢なあなたを混沌の世紀末に引きずり込むのが、ほかでもないTutorialなのです。 TutorialではほぼControllerしか出てこないので、素直にこの通り書いているとまず間違いなく3カウントでControllerにコードが集中するいわゆるFat Controllerになり、せっかくMVCフレームワークも地獄の荒野になります。 実は、Angular.jsでまず目を通すべきなのはDeveloper GuideのConceptual Overviewです。これを読めばどう処理を分割するかがきちんと書かれていますが、以下ではそれ+経験をもとにAngular.jsで正しくMVCを使用するためのポイントをまとめました。 Angular.jsの3原則 1.Controllerはイベントハンド

    お前のAngular.jsはもうMVCではない。と言われないためのTutorial - Qiita
  • 1