タグ

algorithmに関するshimanpのブックマーク (136)

  • Google App Engineでランキングやページングを実現する - $koherent->diary

    昨日一昨日、Google App Engine (GAE)に関する日最大の勉強会(だと思う)appengine ja night #7 (ajn7)が行われました。 その中で『ランキング問題』が話題に上がりました。『ランキング問題』とは、何十万件もの点数のデータがあるときに、App Engine上で、「◯点は何位です」と高速に求めることは難しい、という問題です。(◯ページ目を表示、というページングもこれと同じ種類の問題になります。) ajn7では「上位でない限り正確な順位は必要ないのではないか」という話になりましたが、Skiplistを用いた検索アルゴリズムを使えば正確かつ高速に順位を求めることができるのではないかと思い、実装&検証してみました。 ランキング(順位取得)のデモ 下記ページで順位取得のデモを動かしています。スコア(点数)を入力すると順位と取得にかかった時間が表示されます(時

    Google App Engineでランキングやページングを実現する - $koherent->diary
  • あなたのスキルで飯は食えるか? 史上最大のコーディングスキル判定

    あなたのスキルで飯はえるか? 史上最大のコーディングスキル判定:makeplex salon(1/2 ページ) この問題ができたから優秀な人材とは限らないけれど、できない人は“ほぼ確実に”優秀ではない――プログラマーの皆さまの実力を計るコーディングスキル判定問題を用意しました。あなたはこの問題が解けるでしょうか? 新年度が始まり、新たに社会人となった読者の方も多いかと思います。あるいは、転職で心機一転がんばろうという読者もおられるでしょう。 あなたがもしプログラマーやSEといった職種であれば、ぜひ面白い仕事を手がけていただきたいと思いますが、そもそも開発分野で当に面白い仕事とは何かを考えたことはありますか? その答えを論ずる前に、少し前に話題となったトピックを取り上げたいと思います。それは、岡嶋大介氏の「人材獲得作戦」についてです。ご存じない方のために少し補足しておくと、岡嶋氏は、株価

    あなたのスキルで飯は食えるか? 史上最大のコーディングスキル判定
  • QuickDrawはどのように素早く円を描いていたのか? - ザリガニが見ていた...。

    かつてのMac OS9までの描画エンジンの主役はQuickDrawが担っていた。GUIなOSでは、文字も含めてすべてをグラフィックとして扱うので、画面に見えているすべてのもの*1はQuickDrawによって描かれていたことになる。描画エンジンは、GUIなOS開発の要となる技術である。その出来が、GUIなOS開発の成否を分けるとも言える。 そして、最初期のQuickDrawは、ビル・アトキンソンがたった一人で開発したそうである。 当時(25年以上前)のCPUは、動作クロックが8MHzという性能だった。(現在は2GHz=2000MHzかつ、複数コアが当たり前) そのような性能であっても、違和感なくマウスで操作できるOS環境にするために、斬新な発想や試行錯誤を重ね、相当な努力の末に開発されたのがLisaやMacintoshであった。 Amazon.co.jp: レボリューション・イン・ザ・バレー

    QuickDrawはどのように素早く円を描いていたのか? - ザリガニが見ていた...。
  • 最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ

    動的計画法とメモ化再帰 今回は、非常によく用いられるアルゴリズムである、「動的計画法」「メモ化再帰」について説明します。この2つはセットで覚えて、両方使えるようにしておくと便利です。 なお、メモ化再帰に関しては、第5・6回の連載の知識を踏まえた上で読んでいただけると、理解が深まります。まだお読みになっていない方は、この機会にぜひご覧ください。 中学受験などを経験された方であれば、こういった問題を一度は解いたことがあるのではないでしょうか。小学校の知識までで解こうとすれば、少し時間は掛かるかもしれませんが、それでもこれが解けないという方は少ないだろうと思います。 この問題をプログラムで解こうとすると、さまざまな解法が存在します。解き方によって計算時間や有効範囲が大きく変化しますので、それぞれのパターンについて考えます。 以下の説明では、縦h、横wとして表記し、プログラムの実行時間に関しては、

    最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ
  • トップクラスだけが知る「このアルゴリズムがすごい」――「探索」基礎最速マスター

    トップクラスだけが知る「このアルゴリズムがすごい」――「探索」基礎最速マスター:最強最速アルゴリズマー養成講座(1/4 ページ) プログラミングにおける重要な概念である「探索」を最速でマスターするために、今回は少し応用となる探索手法などを紹介しながら、その実践力を育成します。問題をグラフとして表現し、効率よく探索する方法をぜひ日常に生かしてみましょう。 まだまだ活用可能な探索 前回の「知れば天国、知らねば地獄――『探索』虎の巻」で、「探索」という概念の基礎について紹介しました。すでに探索についてよく理解している方には物足りなかったかと思いますが、「問題をグラフとしてうまく表現し、そのグラフを効率よく探索する」というアルゴリズマー的な思考法がまだ身についていなかった方には、得るものもあったのではないでしょうか。 前回は、「幅優先探索」と「深さ優先探索」という、比較的単純なものを紹介しましたが

    トップクラスだけが知る「このアルゴリズムがすごい」――「探索」基礎最速マスター
  • 経路探索アルゴリズムの「ダイクストラ法」と「A*」をビジュアライズしてみた - てっく煮ブログ

    as詳解 ActionScript 3.0アニメーション ―衝突判定・AI・3DからピクセルシェーダまでFlash上級テクニック を読んでいて、経路探索のアルゴリズムで A* が取り上げられていました。A* については、いろいろ検索して調べたりもしたのですが、やっぱりに書いてあると理解しやすいですね。せっかくなので自分流に実装してビジュアライズしてみました。ダイクストラ法まずは A* の特別なケースでもあるダイクストラ法から見ていきます。クリックすると探索のシミュレーションが開始します。スタート地点(S)からゴール(G)への探索が始まります。色がついたところが「最短経路が決定した場所」です。スタート地点から少しずつ探索が完了していきます。半分ぐらい完了しました。まだまだ進みます。最後まで終わりました。最短経路を黒色矢印で表示しています。ダイクストラ法は、スタート地点から近いノード(=マス

  • 知れば天国、知らねば地獄――「探索」虎の巻

    いよいよ今回から、具体的なアルゴリズムの紹介に入っていきます。今回は、プログラミングにおける重要な概念である「探索」について考えます。グラフに変換し、探索する、という流れを知るとともに、そのグラフを効率よく探索する方法について紹介します。 今後紹介していくアルゴリズムについて お待たせしました! 「最強最速アルゴリズマー養成講座」という連載タイトルのとおり、今回の連載からいよいよ具体的なアルゴリズムの紹介に入っていきたいと思います。 しかし、それを読んでいただく前に、1つ注意してもらいたいことがあります。連載第3回でもお伝えしたように、「問題を、既存の適当なアルゴリズムに当てはめる」という考え方は、非常に危険である、ということです。 筆者の経験上、TopCoderでRedCoder以上を目指すのであれば、回答時間短縮のために、いままでのパターンを利用するのも方法の1つなのですが、連載では

    知れば天国、知らねば地獄――「探索」虎の巻
  • liris.org

    This domain may be for sale!

    liris.org
  • Blogopolisから学ぶ計算幾何 記事一覧 | gihyo.jp

    運営元のロゴ Copyright © 2007-2025 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します⁠。個別にライセンスが設定されている記事等はそのライセンスに従います。

    Blogopolisから学ぶ計算幾何 記事一覧 | gihyo.jp
  • NYから東京まで何マイル?Google検索で都市間の直線距離を表示 | SEOモード

    Google+にて、Google検索で「how far is it from A to B」で検索するとAとBの都市間の直線距離を表示できるようになったとの投稿がありました。 実際にやってみたところ、こんな風に表示されました。 こちらは「NYと東京の距離」。 これまでも下図のように移動距離は表示していましたが、(私が調べた限りでは)交通手段があって、アクセス可能な場合に限られていたようです。 いずれにしても、この直線距離の表示はまだ日語環境では導入されておらず、英語環境でも「How far is it from London to New Delhi(ロンドンとニューデリーの距離)」では表示できなかったので、一先ずは限定的な提供のようですね。 ※こちらの記事は最初別のタイトルで公開されましたが、私の勘違いが含まれていたので、書き直して再投稿いたしました。 最初の記事を読まれた方にはご迷惑

    NYから東京まで何マイル?Google検索で都市間の直線距離を表示 | SEOモード
  • [プログラミング] ビット並列アルゴリズムを使った編集距離 - tsubosakaの日記

    ふと、ビット並列アルゴリズムを使った編集距離を計算するアルゴリズムを書きたくなったので書いてみた。 まず、通常の編集距離であるLevenshtein Distanceを求めるアルゴリズムは以下のように書ける int levenshteinDistance(String A, String B) { int m = A.length(); int n = B.length(); int dp[] = new int[n + 1]; int next[] = new int[n + 1]; for (int i = 0; i <= n; i++) dp[i] = i; for (int i = 1; i <= m; i++) { next[0] = i; for (int j = 1; j <= n; j++) { if (A.charAt(i - 1) == B.charAt(j - 1))

    [プログラミング] ビット並列アルゴリズムを使った編集距離 - tsubosakaの日記
  • アルゴリズムの紹介

     ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意して

  • 「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」

    「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」:最強最速アルゴリズマー養成講座(1/3 ページ) 典型的なアルゴリズムをたくさん知っている人間が最強か――? いいえ、典型的なアルゴリズムを知らなくても、違ったアプローチで答えに迫る方法はいくらでも存在します。短い実行時間で正確な答えを導き出せるかを考える習慣をつけましょう。 アルゴリズマー養成講座と銘打ってスタートした連載。もしかすると読者の方の興味は、はやりのアルゴリズムや汎用的なアルゴリズムを知ることにあるのかもしれません。しかし、今回は、いわゆる「典型的なアルゴリズム」を用いずに進めていきたいと思います。 なぜ典型的なアルゴリズムを用いないのか。それは、典型的なアルゴリズムばかりを先に覚え、それだけでTopCoderなどを戦っていこうとした場合、それに少しでもそぐわない問題が出た場合に、まったく太刀打ちできなくなってしまう

    「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」
  • 類似画像検索システムを作ろう - 人工知能に関する断創録

    C++版のOpenCVを使ってカラーヒストグラムを用いた類似画像検索を実験してみました。バッチ処理などのスクリプトはPythonを使ってますが、PerlでもRubyでも似たような感じでできます。 指定した画像と類似した画像を検索するシステムは類似画像検索システムと言います。GoogleYahoo!のイメージ検索は、クエリにキーワードを入れてキーワードに関連した画像を検索しますが、類似画像検索ではクエリに画像を与えるのが特徴的です。この分野は、Content-Based Image Retrieval (CBIR)と呼ばれており、最新のサーベイ論文(Datta,2008)を読むと1990年代前半とけっこう昔から研究されてます。 最新の手法では、色、形状、テクスチャ、特徴点などさまざまな特徴量を用いて類似度を判定するそうですが、今回は、もっとも簡単な「色」を用いた類似画像検索を実験してみます

    類似画像検索システムを作ろう - 人工知能に関する断創録
  • コンピュータ将棋は来年プロ4段に追いつく - 武蔵野日記

    情報処理学会の機関誌「情報処理」の2009年9月号の小特集「コンピュータ将棋の新しい波」がおもしろい機械学習に基づく局面評価関数のパラメータ(重み)調整を取り入れた Bonanza が話題をさらったのは記憶に新しいが、今年の世界コンピュータ将棋選手権ではソースコードまで全部公開された Bonanza を用いた手法が多数登場したらしい。(というのはtihara さんの日記で知っていたが) ちなみに優勝したのは GPS 将棋であり、p.871に ktanaka 先生や@shnskさん、@gyoshiki さんたちの写真が掲載されている :-) 棋譜や全体の結果は特集を参照してもらうとして、興味深いのは勝又6段の「プロ棋士から見たコンピュータ将棋」と伊藤さんの「合議アルゴリズム『文殊』」。先に後者のほうについて話すと、文殊は多数のプログラムの合議をして多数決で差し手を決めるシステムで、単にア

    コンピュータ将棋は来年プロ4段に追いつく - 武蔵野日記
  • ぜひ押さえておきたいコンピューターサイエンスの教科書

    僕はバイオインフォマティクスという生物と情報の融合分野で研究を行っています。東大の理学部情報科学科にいた頃は同僚のマニアックな知識に驚かされたものですが、そのような計算機専門の世界から一歩外に出ると、それが非常に希有な環境だったことに気が付きました。外の世界では、メモリとディスクの違いから、オートマトン、計算量の概念など、コンピューターサイエンスの基礎知識はあまり知られていませんでした。コンピューターサイエンスを学び始めたばかりの生物系の人と話をしているうちに、僕が学部時代に受けた教育のうち、彼らに欠けている知識についても具体的にわかるようになってきました。 バイオインフォマティクスに限らず、今後コンピュータを専門としていない人がコンピューターサイエンスについて学ぶ機会はますます多くなると思われます。そこで、これからコンピューターサイエンスを学ぼうとする人の手助けとなるように、基礎となる参

  • YAPC::Asia 2009 1日目 「Perlで圧縮」の資料 - naoyaのはてなダイアリー

    1日目の発表を終えました。資料を公開します。 Perlで圧縮View more presentations from Naoya Ito. 発表の方は少し駆け足になってしまいました。明日ははてなブックマークのシステム事例の話をしたいと思います。 発表の様子 via: http://yapcasia2009.ficia.com/

  • Google検索アルゴリズムで生態系崩壊を予測 | WIRED VISION

    前の記事 「飛行機からレーザーで地上攻撃」実験に成功 Google検索アルゴリズムで生態系崩壊を予測 2009年9月 8日 Hadley Leggett 写真:Flickr/fusion68k、イラスト:PLOS Computational Biology。サイトトップの画像は海藻をべるマナティ。画像はWikimedia Commons 生物学者たちは、生態系を破壊する最も効率的な方法を見い出した――Google社の検索アルゴリズムに基づいてだ。 物網の要になる生物種が絶滅すると、生態系全体の崩壊を引き起こす危険性があるということは、以前から科学者の間では知られていた。だが、種の相互作用は無数ともいえるほど存在するため、どの動物や植物がいちばん重要なのかを推測することは難しい。 [現在の群集生態学では「物連鎖」という言葉より、物網という概念の方が現実的なものとして重視されてきている

  • オーダーを極める思考法

    プログラムの実行に掛かる時間を把握しておくのは、プログラミングを行う上で基的な注意点です。今回は、計算量のオーダーについて学びながら、TopCoderのMedium問題を考えてみましょう。 プログラムの実行時間 業務としてプログラミングをされている方には釈迦に説法かもしれませんが、プログラムの実行に掛かる時間を把握しておくのは、プログラミングを行う上で基的な注意点です。そしてこれは、TopCoderなどのコンテストでプログラムを組む際にもよく当てはまります。通常、こうしたことは感覚的に理解している方がほとんどだと思いますが、具体的にどれくらいのループを回すと何秒掛かる、といった基準を持っている人は少ないのではないでしょうか? 非常に基的なことですが、プログラムの実行時間に関して再確認しておきたいと思います。 TopCoderの制限に関して TopCoderでは、実行時間およびメモリ使

    オーダーを極める思考法
  • サービス終了のお知らせ

    サービス終了のお知らせ いつもYahoo! JAPANのサービスをご利用いただき誠にありがとうございます。 お客様がアクセスされたサービスは日までにサービスを終了いたしました。 今後ともYahoo! JAPANのサービスをご愛顧くださいますよう、よろしくお願いいたします。