本スライドでは、有名なアルゴリズムを概観し、アルゴリズムに興味を持っていただくことを目標にします。 第 1 部:アルゴリズムとは 第 2 部:学年を当ててみよう 第 3 部:代表的なアルゴリズム問題 第 4 部:コンピュータとアルゴリズム

本スライドでは、有名なアルゴリズムを概観し、アルゴリズムに興味を持っていただくことを目標にします。 第 1 部:アルゴリズムとは 第 2 部:学年を当ててみよう 第 3 部:代表的なアルゴリズム問題 第 4 部:コンピュータとアルゴリズム
先日、気持ちのいいジャンプを目指してというQiitaの記事を見かけました。記事中では、マリオのジャンプについても触れられています。マリオというと、マリオブラザースやスーパーマリオブラザース等々、色々あるのですが、これはおそらくスーパーマリオブラザースの事だと思われます。ジャンプアクションゲームといったらスーマリですね。 そのマリオのジャンプの仕組みは「マリオの速度ベクトルを保存しておいて座標を計算するんじゃなくて~」と書かれていて、別サイトのブログへのリンクが張られています。 マリオのジャンプ実装法とVerlet積分 ただ、この記述については不正確であるという別のブログもあったりします。 マリオの完コピvol.28 ジャンプの解析と修正 ホントのところはどうなんでしょうか?世界で最も有名なゲームのジャンプがどのように処理されているのか気になったので調べてみることにしました。 原典にあたる
前書き サイゼリヤ1000円ガチャをつくってみた(Heroku + Flask + LINEbot) 「サイゼリヤで1000円あれば最大何kcal摂れるのか」を量子アニーリング計算(Wildqat)で解いてみた。 完全に二番煎じですが、古典コンピューターが好きなので、個人的に古典コンピューター最強のなんだかよく分からないけどよく分からないものをよく分からないうちに解いてくれるソフト、z3を使ってサイゼリア問題を解いてみました。 問題 サイゼリヤのメニューを重複無しで合計1000円以下になるように選んだときに、最大の総カロリーになるようなメニューの組み合わせを求めよ。 サイゼリヤのメニューは https://github.com/marushosummers/Saizeriya_1000yen こちらを使わせて使わせて頂きました。メニューは100種類ぐらいみたいで、カロリーは整数値で、プロコ
Level up your coding skills and quickly land a job. This is the best place to expand your knowledge and get prepared for your next interview.
情報科学科の卒業生やプログラマの中には、UberやNetflixのような新興企業や、 Amazon 、 Microsoft 、 Google のような大企業や、InfosysやLuxsoftのようなサービスを基本とする企業で、プログラミング、コーディング、ソフトウェア開発の仕事に就きたいと考える人が大勢います。しかし、実際にそういった企業で面接を受ける場合、大半の人が プログラミングに関してどのような質問をされるか 見当もつきません。 この記事では、 新卒生からプログラマになって1〜2年までの 経験値が異なる人たち向けに、それぞれの プログラミングの面接でよく聞かれる質問 をいくつか紹介していきます。 コーディングの面接では、主に データ構造とアルゴリズムに基づいた質問 がされますが、 一時変数を使わずにどのように2つの整数をスワップするのか 、というような論理的な質問もされるでしょう。
Project Euler † プログラムで解く数学の問題集です。 公式サイト 適当に和訳してます。我こそはと思う人はライセンスを確認した上で自由に書いてください。 ↑
こんにちは!はてなアプリケーションエンジニアの id:takuya-a です。 みなさんは、このような疑問をもったことはありませんか? grep はどのように文字列を検索しているのか? MeCab はどうやって辞書を高速にルックアップしているのか? パーサやコンパイラを作りたいけど、何から始めればいいのか? 本稿では、「文字列アルゴリズムとはどんなものなのか?」「なぜ重要なのか?」「何を知っておくべきか?」「どうやって勉強すればいいのか?」といった疑問にお答えしていこうと思います。 文字列アルゴリズムの意外な応用や、モチベーションを保ちやすい勉強のしかた、文字列アルゴリズムを勉強するために行った社内での取り組み、実装するときのコツといったトピックについても触れています。 このエントリは、はてなエンジニアアドベントカレンダー2016の22日目の記事です。昨日は id:syou6162 さんに
高速な全文検索アルゴリズムであるFM-indexについて解説する。理解しがたい点や間違っている点があれば是非コメントで指摘してほしい。 概要 FM-indexはリニアな文字列に対して検索をするアルゴリズムで、主に簡潔データ構造とBWT(およびLF mapping)という二つのアイデアから成り立っている。BWTはBurrows-Wheeler変換のことで、文字列を特殊な並び順に変換するという可逆関数である。BWTされた文字列を簡潔データ構造固有の操作をすることで、クエリ文字列の長さに比例した短い時間で文字列を探し出すのがFM-indexだ。 簡潔データ構造 簡潔データ構造に関してはFM-indexで必要となる二つの関数だけ説明して、詳細は次の機会に譲るとする。さて、二つの関数はともに文字列のある位置より前の部分に含まれている文字の数を数え上げるというものでrank()とrankLessTha
あけましておめでとうございます。白ヤギの物理担当、シバタアキラ(@punkphysicist)です。 皆様はどんなお正月を過ごされましたか?日本の正月といえば、おせち、日本酒、おばあちゃん、そしてパズル、ですよね。私の正月はそんな感じでした。お節をたらふく食べ、美味しいお酒でほろ酔い気分になっている私の横で、黙々とおばあちゃんがパズルをやっているのに気づいたのです。部屋中をフワフワしている私とは全く対照的に、微動だにせずパズルを続けるおばあちゃん。御年迎えられると辛抱強さが半端ない。 そんなおばあちゃんがやっていたのはかわいいチョコレートのピースとは裏腹にこんな挑発的な文言の書かれたパズルです(この記事はアフィリエイトではありませんが、写真をクリックすると買えます) 何時間たっても答えが出ないおばあちゃん、辛抱強さは人一倍強いですが、私も何とか助けてあげたいと思いトライ。しかし日本酒が・・
Photo by VFS Digital Design 皆さんはアルゴリズムやデータ構造について知っているでしょうか。情報系の学部出身の人は学校の授業でやったかもしれません。一方で学校で情報系の勉強をせずにITエンジニアになったという方は、アルゴリズムやデータ構造について一度は「勉強したほうが良いんだろうな」と思いつつも、実際の業務であんまり必要なさそうだし、難しそうだし、DevOpsやオブジェクト指向やフレームワークについて学ぶので手一杯で未着手、という人も多いのではないでしょうか。 今回はそんな方に向けて、アルゴリズム、データ構造を学ぶ意義と、それらを学ぶときに役立つ本とサイトについてまとめました。 ■アルゴリズム、データ構造を学ぶ意味 アルゴリズムやデータ構造について語られるときに、非常に良く言われる事として「そんなものは実務に役立たたないので必要ない」という意見があります。本当にア
AtCoder (アットコーダー) 毎週アルゴリズム系のプログラミングコンテストを開催しているAtCoderですが、それを使って、どのように勉強すれば良いのか?というのは、結構困っている人がいるようです。 そこで、社長お勧めの、誰でも簡単に続けられる勉強方法を伝授します。 1、コンテストに参加する とりあえず、AtCoderで勉強をしたいなら、過去問を解くより、リアルタイムのコンテストに参加することがお勧めです。 自分ではなかなか勉強する気が起こらない・・・。という人でも、時間が決まったコンテストであれば参加できる、という人は多くいるようです。 たまに開催出来ないことがありますが、毎週土曜日、午後9時から10時半、または11時まで、コンテストが開催されています。 ある程度コンテストに慣れた人向けのAtCoder Regular Contestと、初心者~中級者向けのAtCoder Begi
組み合わせ最適化の手法として「動的計画法」というモノがあります。 wikipediaから抜粋 動的計画法(どうてきけいかくほう、英: Dynamic Programming, DP) コンピュータ科学の分野において、ある最適化問題を複数の部分問題に分割して解く際に、そこまでに求められている以上の最適解が求められないような部分問題を切り捨てながら解いていく手法 一見難しそうですが、実は理解するのは以外と簡単です。いろいろな場面で応用が利く便利な手法ですので、覚えておいて損はないものです。コンピュータ系、情報系のお勉強をする人であれば、おそらく一度は習ったりするかもしれません。 ナップサック問題と動的計画法 動的計画法の一番親しみやすそうな例として「ナップサック問題」というのがよく取り上げられます。 こんな感じの問題です。 今ここに様々な大きさの品物が置いてあるとします。そしてそれらの品物は各
この記事は、Competitive Programming Advent Calendar Div2013(http://partake.in/events/3a3bb090-1390-4b2a-b38b-4273bea4cc83)の8日目の記事です。 動的計画法(Dynamic Programming, DP)についての記事です。 12/9 前編にサンプルプログラム(http://ideone.com/2B7f4v)を追加しました 12/11 前編の図2つを差し替えました。 はじめに まずは、本やネットの資料で、動的計画法についてのすばらしい解説はいろいろありますので、まずはそれらを参考に。 プログラミングコンテストでの動的計画法 http://www.slideshare.net/iwiwi/ss-3578511 最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メ
2014年7月30日より8月27日まで開催した、paizaオンラインハッカソン(略してPOH![ポー!])Lite「天才火消しエンジニア霧島 もしPMおじさんが『丸投げ』を覚えたら」ですが、どのような解法が有ったのでしょうか。 今回もPOH恒例の「解説図解」を、天才火消しエンジニア霧島が解説するとしたら、という体で書いてみたいと思います。(特に文体とか変えませんがw 最後に霧島壁紙DLが有るので是非最後までお読みください。) ■どのような高速化ステップがあるのか? 今回の問題ですが、実行時間に大きく影響する計算量別にみたアプローチでは、すべての組み合わせを出して、人数を満たして一番安い組み合わせを見つける全探索[計算量はO(2^N)]と、動的計画法[計算量はq = max(q_i) としてO(Nq) ](やり方によってはO(NM))による2種類があります。 また全探索を改良し、効率的な枝刈
アルゴリズムを理解するのにビジュアル化することは非常に有効で、プログラムをビジュアル化することで理解が進むのもまた同じ。そこで、アルゴリズム・プログラミングの理解が進むようにと、アルゴリズムを記述したプログラムコードを一挙にビジュアル化することで、アルゴリズム&プログラミングを同時に学習できる一挙両得なサービス「VisuAlgo」が公開されています。 VisuAlgo - visualising data structures and algorithms through animation https://visualgo.net/en 上記のVisuAlgoサイトで試しにソートアルゴリズムの基本プログラム「バブルソート」をビジュアル化してみます。「Sorting」の「bubble」をクリック。 検索窓の下に「bubble」と表示されたのを確認したら「Sorting」の画像をクリック。
2014年4月16日より2014年5月14日まで開催していたpaizaオンラインハッカソン(略してPOH![ポー!])Vol.2「女子大生とペアプロするだけの簡単なお仕事です!」で提出された最速コードはどのような高速化のアプローチでで生み出されたのでしょうか? POH Vol.2に登場した女子大生インターンプログラマの木野ちゃん(左のイラスト)にアルゴリズムを図解で教えるとしたら、どう教えるだろうか、という事で、今回は図解してみました。 今回は前回の最速コード発表レポート(【結果発表】女子大生プログラマの心を鷲掴みにした最強のコード8選)に引き続き、最速コードの裏側に迫ります。 ■高速化のアプローチ方法について 今回もPOH Vol.1 と同様に、POH Vol.2では計算量の改善による高速化を柱とするアプローチを想定して出題されました。基本は定数倍高速化によって想定解法よりも悪い計算量の
平方数とは、ある整数の平方(=二乗)であるような整数のことを言います。つまり、0,1,4,9,16,...が平方数ということになります。 ところで、与えられた整数が平方数かどうかを判定するにはどうすれば良いでしょうか。与えられた整数の平方根の小数点以下を切り捨て、それを二乗して元の数になるかどうか、というのがすぐ思いつく実装です。 <?php function is_square($n) { $sqrt = floor(sqrt($n)); return ($sqrt*$sqrt == $n); } しかし、平方根の計算は比較的重い処理です。もっと高速化する方法は無いのでしょうか。 多倍長整数演算ライブラリGNU MPには平方数かどうかを判定するmpz_perfect_square_p関数が存在します(PHPでもgmp_perfect_square関数として利用できます)。本稿ではこの実装
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く