タグ

ブックマーク / takuti.me (3)

  • Yahoo!の異常検知フレームワーク"EGADS"

    Yahoo!がOSSとして開発している異常検知フレームワーク "EGADS" (Extensible Generic Anomaly Detection System) について書いた次の論文を読んだ: Generic and Scalable Framework for Automated Time-series Anomaly Detection (KDD 2015) リアルタイムなデータをモデリングする種のアルゴリズムの実装とはどうあるべきなのか、という話は難しい。 僕も異常検知や情報推薦のためのアルゴリズムをパッケージ化してみてはいるものの、 時系列データの入力、モデリング、予測、出力といったコンポーネントをいかに切り分けて実装するか バッチとオンラインアルゴリズムのバランスをいかに取るか どこまで自動化して、どこにヒューリスティクスを取り入れる余地を残すか といった点は当に悩ま

    Yahoo!の異常検知フレームワーク"EGADS"
  • Amazonの推薦システムの20年

    IEEE Internet Computingの2017年5・6月号に "Two Decades of Recommender Systems at Amazon.com" という記事が掲載された。 2003年に同誌に掲載されたレポート "Amazon.com Recommendations: Item-to-Item Collaborative Filtering" が Test of Time、つまり『時代が証明したで賞』を受賞したことをうけての特別記事らしい 1。 「この商品を買った人はこんな商品も買っています」という推薦で有名なAmazonが1998年にその土台となるアルゴリズムの特許を出願してから20年、彼らが 推薦アルゴリズムをどのような視点で改良してきたのか 今、どのような未来を想像するのか その一端を知ることができる記事だった。 アイテムベース協調フィルタリング 20年前も

    Amazonの推薦システムの20年
  • Treasure Dataインターンにみる機械学習のリアル #td_intern

    8月1日から9月30日まで、大学院の同期で小学生時代は落ち着きがなかった @ganmacs と、小学校の給ではソフト麺が出なかった @amaya382 と一緒に Treasure Data (TD) Summer Internship に参加した。 Treasure Data インターンで最高の夏過ごしてきた #td_intern - memo-mode トレジャーデータでインターンしてた話 #td_intern - 水底 インターンの途中で1週間アメリカへ行ってしまうという事情を酌んだ上で採用していただき、限られた期間で物凄く適切な課題設定とメンタリングを行なってくださった@myuiさんには頭が上がらない。当にありがとうございました。 TDインターン全体としての見どころは、 全方位ウルトラエンジニアで気を抜くと死ぬ環境 丸の内の一1000円オーバーの飲店事情 ラウンジの炭酸強めで

    Treasure Dataインターンにみる機械学習のリアル #td_intern
  • 1