タグ

QiitaとDeep Learningに関するslay-tのブックマーク (5)

  • 2021年最強になるか!?最新の画像認識モデルEfficientNetV2を解説 - Qiita

    その他層の数も探索空間に入れています。ここで拡張率とは、MBConvの最初のConvでチャネル数を何倍にするかの係数のことで、こちらでより詳しく解説しています。 探索は精度$A$、ステップごとの学習時間$S$、パラメータサイズ$P$を用いて、$A\cdot S^w\cdot P^v$を最大化するように行われます。ここで$w=-0.07, v=-0.05$であり、これらの値は実験的に決定されています。 1.3.2 EfficientNetV2のアーキテクチャ 下表がEfficientNetV2のSサイズのモデルになります。 画像: "EfficientNetV2: Smaller Models and Faster Training", Tan, M., Le, Q., (2021) 比較のためにEfficientNet-B0(i.e. V1)のアーキテクチャも下に載せます。 画像: "Ef

    2021年最強になるか!?最新の画像認識モデルEfficientNetV2を解説 - Qiita
  • やってみたら簡単!ディープラーニング・オセロを作って自分を負かすまで強くした話(その2・iOS編) - Qiita

    前回の記事「やってみたら簡単!ディープラーニング・オセロを作って自分を負かすまで強くした話(その1)」の続編です。 前回は、ディープラーニング・オセロのモデルを作って推論させるところまでを説明しました。 今回は、今回はこのモデルをiOSで動作させ、ミニマックス法やモンテカルロ木探索に組み込む方法について説明します。 前回、UIの説明をすると書きましたが、UIそのものはもともと参加していたコンテストであるリバーシチャレンジから提供されていたものを利用していたので、説明としては省略します。 前回はPython中心の記事でしたが、今回はSwift + Core ML中心の記事になります。 コードはこちらにあります。 TokyoYoshida/reversi-charenge ミニマックス法とモンテカルロ木探索ではどうだったか? 結論から言うと、ミニマックス法は強くならず、モンテカルロ木探索は、私

    やってみたら簡単!ディープラーニング・オセロを作って自分を負かすまで強くした話(その2・iOS編) - Qiita
  • メルアイコン変換器を作った話 - Qiita

    はじめに 「メルアイコン」と呼ばれる、Melvilleさんの描くアイコンはその独特な作風から大勢から人気を集めています。 上はMelvilleさんのアイコンです。 この方へアイコンの作成を依頼し、それをtwitterアイコンとしている人がとても多いことで知られています。 代表的なメルアイコンの例 (左から順にゆかたゆさん、みなぎさん、しゅんしゅんさんのものです (2020/12/1現在)) 自分もこんな感じのメルアイコンが欲しい!!ということで機械学習でメルアイコン生成器を実装しました!!.......というのが前回の大まかなあらすじです。 今回は別の手法を使って、キャラの画像をメルアイコンに変換するモデルを実装しました。例えばこんな感じで変換できます。 実装したコードはこちら 記事ではこれに用いた手法を紹介していきます。 GANとは 画像の変換にあたってはUGATITという手法を使って

    メルアイコン変換器を作った話 - Qiita
  • 新たな活性化関数「FReLU」誕生&解説! - Qiita

    オミータです。ツイッターで人工知能のことや他媒体で書いている記事など を紹介していますので、人工知能のことをもっと知りたい方などは気軽に@omiita_atiimoをフォローしてください! 他にも次のような記事を書いていますので興味があればぜひ! 【2020決定版】スーパーわかりやすい最適化アルゴリズム -損失関数からAdamとニュートン法- 画像認識の定番データセットImageNetはもう終わりか パラメータ数を激減させる新しい畳み込み「MixConv」解説! 自然言語処理の王様「BERT」の論文を徹底解説 【基編】画像認識に使用されるData Augmentationを一挙にまとめてみた! 画像認識に特化させた新たな活性化関数FReLU解説&実装! 今やあらゆる分野で驚くべき結果を残し続けているニューラルネットワークですが、そのニューラルネットに無くてはならないものこそが活性化関数で

    新たな活性化関数「FReLU」誕生&解説! - Qiita
  • 【論文読み】異常検知を支える技術 - Qiita

    前回の記事では、ディープラーニングの異常検知に関するベンチマークを 行いました。その結果、「L2-SoftmaxLoss」が一番良い性能を示しました。 稿では、その元になった「論文の概要」と「異常検知に適用した場合の考察」を 記したいと思います。 ※なお、稿の図は特に明記がない場合は論文(L2-constrained Softmax Loss for Discriminative Face Verification )より引用しています。 論文の結論 結論からいうと、論文で言いたかったことは ということです。この意味が分かる方は、既に論文のほとんどを理解できています。 あとは、分類精度を向上させるために、ソフトマックス関数をどう改造するかのお話しです。 ソフトマックス関数のクロスエントロピー 分類問題で良く使われるソフトマックス関数のクロスエントロピーは 以下のとおりです。 L_S=-\

    【論文読み】異常検知を支える技術 - Qiita
  • 1