こんにちは。レトリバの飯田(@meshidenn)です。カスタマーサクセス部 研究チームのリーダーをしており、マネジメントや論文調査、受託のPOCを行なっています。 従来の検索アルゴリズムの問題点 COILの概要 検索時の挙動 学習時の挙動 結果 実験 終わりに 従来の検索アルゴリズムの問題点 従来の検索アルゴリズムの問題点といえば、"意味"を考慮できないということが挙げられます。従来の検索アルゴリズムは、単語一致をベースとして、そのスコアリングをするのが基本だからです。そのため、単語が一致しないことによる弊害がおきます。そして、「あー、意味を考慮できたらなー」という発想に至ります。 その結果、クエリも文書もベクトル表現にして計算してしまえ!ということで近年研究が盛んに行われており、BERT1が提案されて以降、教師データがあれば、うまく行くことがわかってきています。さらに、近年、最近傍アル
ZOZO研究所の清水です。弊社の社会人ドクター制度を活用しながら、「社内外に蓄積されているデータからビジネスへの活用が可能な知見を獲得するための技術」の研究開発に取り組んでいます。 弊社の社会人ドクター制度に関しては、以下の記事をご覧ください。 technote.zozo.com 私が現在取り組んでいるテーマの1つに、「機械学習が導き出した意思決定の理由の可視化」があります。この分野は「Explainable Artificial Intelligence(XAI)」と呼ばれ、近年注目を集めています。 図.XAIに関連する文献数の推移(引用:https://arxiv.org/abs/1910.10045) その中でも今回はユーザに対するアイテムの推薦問題に焦点を当て、「なぜこのユーザに対して、このアイテムが推薦されたのか?」という推薦理由の可視化が可能なモデルを紹介します。 本記事の概要
しましま先生(@shima__shima)こと神嶌敏弘先生から、訳書『マスターアルゴリズム』をご恵贈いただきました。 マスターアルゴリズム 世界を再構築する「究極の機械学習」 作者:ペドロ・ドミンゴス講談社Amazon 本書はビル・ゲイツが「AIを知るための本」と絶賛したという"The Master Algorithm"の邦訳版で、実際に「難しい理論や数式は書かれていないがこの一冊を読むだけで現代の機械学習(人工知能)の世界の全容を一望できる」優れた本だと個人的には感じました。また縦書き本ゆえいわば「読み物」的な立ち位置の書籍であり、研究者や技術者のみならずビジネスパーソンさらには一般の読書家にとっても読みやすく、尚且つ得るものの大きい一冊だと思います。 ということで、以下簡単にレビューしていきたいと思います。なお実は僕自身もしましま先生から発刊前の段階で翻訳内容の閲読を依頼されて一通り目
輸送問題と呼ばれる問題があります. この問題は,普通は線形計画法やフローのアルゴリズムを使って解かれます. この記事では,この輸送問題を近似的に行列計算で解くアルゴリズム(エントロピー正則化 + Sinkhorn-Knopp アルゴリズム)を紹介します. 輸送問題とは アルゴリズム 得られる解の例 なぜこれで解けるのか? 競プロの問題を解いてみる 機械学習界隈における流行 まとめ 輸送問題とは 輸送問題とは以下のような問題です. 件の工場と 件の店舗からなる,ある商品の流通圏があるとする. 各工場には 個の在庫がある.. 各店舗では 個の需要がある. 在庫の総和と需要の総和は等しいとする (すなわち ). 工場 から店舗 に商品を一つ運ぶためには の輸送コストがかかる. 各工場 から各店舗 への輸送量 を適切に決めて,各店舗の需要を満たしつつ輸送コストの総和を最小化せよ. 輸送問題は最適化
www.kamishima.net ペドロ・ドミンゴスの『The Master Algorithm』は、ビル・ゲイツが AI 分野の必読書に挙げていたので注目し、ワタシも何度か文章の中で引き合いに出している。 ユートピアのキモさと人工知能がもたらす不気味の谷 - WirelessWire News(ワイヤレスワイヤーニュース) 我々は信頼に足るアルゴリズムを見極められるのか? - WirelessWire News(ワイヤレスワイヤーニュース) そして、邦訳の刊行が期待される洋書を紹介しまくることにする(2017年版)でも取り上げているが、この原著が刊行されたのは2015年である。それから5年以上経ち、もうこれは邦訳の話は流れてしまったかと半ば諦めていたところ、『マスターアルゴリズム 世界を再構築する「究極の機械学習」』の邦題で刊行される。ワオ! マスターアルゴリズム 世界を再構築する「究
ダウンロードはこちら 目的や分析するデータの内容によって、選択すべき機械学習アルゴリズムは変わる。例えば製品管理に適したアルゴリズムと、売り上げ予測に適したアルゴリズムは同じとは限らない。アルゴリズムの真価を引き出すには、事前に目的を明確にすることと、各アルゴリズムの特徴を理解することが必要だ。 本資料は、代表的な5つの機械学習アルゴリズム「線形回帰」「決定木」「SVM」「k平均法」「アプリオリ法」のそれぞれの仕組みと、適する用途を説明する。最適なアルゴリズム選びの一助となれば幸いだ。 プレミアムコンテンツのダウンロードはこちら Copyright © ITmedia, Inc. All Rights Reserved.
ウェブサービスの開発に携わるかぎり、ユーザにより良い体験を提供することは無視できない命題です。本書は、ウェブサービスを成長させることを目的に、ユーザの行動を定量的に評価し、改善する手法を学ぶ書籍です。 シンプルなA/B テストを第一歩に、線形モデルの導入、メタヒューリスティクス、バンディットアルゴリズム、ベイズ最適化と、機械学習の知識を紹介しながら、ウェブサイトを最適化するという現実的な問題を解くための数理的な手法を解説します。 Pythonによるサンプルコードと、グラフィカルな図版で表現された数学的なモデルを組み合わせ、機械学習と統計学の基礎を丁寧に解説しています。ウェブ最適化の手法を学びたい、機械学習の基礎を知りたい読者に最適の1冊です。 内容見本 まえがき 2章の冒頭部分
最近いくつかのところで The Master Algorithm (Domingos 2015) という本が話題になったのでざっと見てみました。日本でも翻訳作業が進行中らしいです。内容は、機械学習の歴史を概観し、最後に、著者のやっていたプロジェクトを押す、というものです。 (2021年5月更新。邦訳は「マスターアルゴリズム ─ 世界を再構築する『究極の機械学習』」) 著者によれば、機械学習は、記号論理派(Symbolist)、神経回路網派(Connectionist)、進化計算派(Evolutionary)、ベイズ派(Bayesian)、類推派(Analogizer)、という5つの流派からなっており、それを統合するのが著者の提案したマルコフ論理ネットワークとのことです。本書の前半はこれらの流派それぞれを、数式を使わずにノリで説明するものです。類推派って何だよと思うかもしれませんが、これは支
はじめに ランキング学習のシリーズ記事の第二弾です*1. 前回の記事ではUnbiased Learning-to-Rankと呼ばれる, clickというimplicit feedbackを用いて relevanceに対して最適なスコアリング関数を学習するための損失関数を設計する方法について議論しました. その中で紹介したのがexamination parameter の逆数によって損失を重み付けするInverse Propensity Weighting (IPW)と呼ばれる方法でした. IPWはclickデータのみから真の損失関数を不偏推定することができるという嬉しさがあった反面, 肝心のexamination parameterの推定方法に関しては Result Randomizationの紹介のみに留まっていました. 本記事では, ユーザー体験を著しく害したり, KPIに大きな打撃を
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く