SVMの説明というと、よく出てくるのはマージンの最大化である。しかし、実装を行う場合には、どちらかというと目的関数をどうやって最小化しようかな、というところの方が重要(注:主形式を勾配法で最適化する場合の話です)で、この間にある微妙なギャップを超えるのは微妙ながらも大変なような気がしている。このギャップをどうやったら埋められるのかというところを考えてみたい。考えながら書いてきちんと推敲しておりませんのでご注意ください。 SVMってなに、という説明でよくあるパターンは、線形識別器(というか、SVM)の学習というのはパラメーターをいじって分離(超)平面をいい感じに引くことですよ、というところから始まり、いい感じってなんだろうか、マージンが最大化されるように引くといいっぽいよね、けど分離不可能な場合はマージンの値が負になることがあるよね、そこでソフトマージンというものを定義して、マージンが負にな