タグ

数学とMathematicsに関するsotukenyouのブックマーク (5)

  • バナッハ=タルスキーのパラドックス - Wikipedia

    バナッハ=タルスキーのパラドックス: 球を適当に分割して、組み替えることで、元と同じ球を2つ作ることができる。 バナッハ=タルスキーのパラドックス (Banach-Tarski paradox) は、球を3次元空間内で、有限個の部分に分割し、それらを回転・平行移動操作のみを使ってうまく組み替えることで、元の球と同じ半径の球を2つ作ることができるという定理(ただし、各断片は通常の意味で体積を定義できない)。この操作を行うために球を最低5つに分割する必要がある。 バナッハ=タルスキーの証明では、ハウスドルフのパラドックスが援用され、その後、多くの人により証明の最適化、様々な空間への拡張が行われた。 結果が直観に反することから、定理であるが「パラドックス」と呼ばれる。証明の1箇所で選択公理を使うため、選択公理の不合理性を論じる文脈で引用されることがある。ステファン・バナフ(バナッハ)とアルフレト

    バナッハ=タルスキーのパラドックス - Wikipedia
  • Account Suspended

    Account Suspended This Account Has Been Suspended

  • 微分方程式を図解する

    物理では(実は物理によらず、いろいろな場面では)「微分方程式を解く」必要があることが多い。なぜなら、物理法則のほとんどが「微分形」で書かれているからである。「微分形で書かれている」というのは「微小変化と微小変化の関係式で書かれている」と言ってもよい。物理の主な分野における基礎方程式は、運動方程式 を初めとして、微分方程式だらけなのである。 微分方程式を解くには、積分という数学的技巧が必要になる。そのため「ややこしい」と嫌われる場合もあるようだ。 計算ではなく図形で「微分方程式を解いて関数を求める」というのはどういうことなのかを感じていただけたらと思い、アニメーションプログラムを作った。ただ計算するのではなく、「何を計算しているのか」をわかった上で計算のテクニックを学んだ方が理解は深まると思う。 ここでは微分方程式の中でも一番単純な「一階常微分方程式」を考える。「一階常微分方程式を解く」とは

  • 畳み込み - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "畳み込み" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2016年7月) 2つの正方形による畳み込み。解として得る波形は三角波となる。黄色の領域で示されている面積が2つの方形波の合成積である。 正方形がRC回路に入力された場合の出力信号波形を得るために、RC回路のインパルス応答と方形波の畳み込みを行っている。 黄色の領域で示されている面積が合成積である。 畳み込み(たたみこみ、英: convolution)とは、関数 g を平行移動しながら関数 f に重ね足し合わせる二項演算である。あるいはコンボリューションとも呼ばれる。 定義[編集]

    畳み込み - Wikipedia
  • 固有値と固有ベクトル - Wikipedia

    モナ・リザの画像(左図)を平行四辺形に線形変換した画像(右図)。この線形変換において、画像の中にある右向きの矢印(青色)は変化していないのに対し、上を向いた矢印(赤色)は方向が変化している。この青い矢印がこの変換における固有ベクトルであり、赤い矢印は固有ベクトルではない。ここで青い矢印は伸張も収縮もしていないので、この固有値は 1 である。このベクトルと平行なすべてのベクトルは固有ベクトルである。零ベクトルも含めて、これらのベクトルはこの固有値に対する固有空間を形成する。 数学の線型代数学において、線型変換の固有値(こゆうち、英: eigenvalue)とは、零ベクトルでないベクトルを線型変換によって写したときに、写された後のベクトルが写される前のベクトルのスカラー倍になっている場合の、そのスカラー量(拡大率)のことである。この零ベクトルでないベクトルを固有ベクトル(こゆうベクトル、英:

    固有値と固有ベクトル - Wikipedia
  • 1