文書の数が多い場合、単語の種類(ボキャブラリ)も多くなり単語の次元が大幅に増えていきます。 一方、一つの文書に含まれる単語の数には限りがあるため、これは全体として疎行列になります。 また、単語が各次元として扱われますが、文書ごとの出現順序など、単語間での関連性を示す情報は抜け落ちたものとなります。 それに対して低次元(通常数百次元程度)の密な行列で単語の意味を定義する方法があります。 これは、「分散表現」や「埋め込み表現」と言われるものになっております。 この表現を獲得するため手法は様々なものがありますが、ここではWord2Vecを紹介します。 元論文 : Efficient Estimation of Word Representations in Vector Space 具体的な実装についての解説 : word2vec Parameter Learning Explained Wor