タグ

ブックマーク / data.gunosy.io (7)

  • テンセントの広告技術が未来すぎる!AdKDD2019のテンセントAds招待講演まとめ - Gunosyデータ分析ブログ

    研究開発チームインターンの北田 (shunk031) です。アメリカのアラスカにて行われたKDD2019に参加・発表してきました。 www.kdd.org KDD2019の広告分野のワークショップであるAdKDD2019では、世界を牽引するアドテク企業が複数招待講演を行いました。 www.adkdd.org その中でも Tencent Ads: Interesting Problems and Unique Challengesにおいて、テンセントの広告チーム(テンセント Ads)の取り組みが未来過ぎたため、資料に取り上げられている技術を中心にまとめて報告させていただきます。 特に驚くべきは動画に対して広告対象の商品画像を自動で合成する VideoIn Ads は眼を見張るものがありました。ぜひこの記事を一読していただき、一緒に未来を感じてほしいです (そしてそれ以上のものを作っていきたい

    テンセントの広告技術が未来すぎる!AdKDD2019のテンセントAds招待講演まとめ - Gunosyデータ分析ブログ
    takashabe
    takashabe 2019/09/04
  • Gunosy MLチームでのABテストの設計と運用 - Gunosyデータ分析ブログ

    こんにちは、Gunosy Tech LabのMLチームでマネージャーをしている id:skozawa です。 今日はMLチームで取り組んでいるABテストの設計と運用について紹介したいと思います。 MLチームはプロダクト横断のチームです。メンバーはグノシー、ニュースパス、LUCRAなどのプロダクトチームにも属しながら、開発を進めています。 ABテストについては以前も少し書いたことがあり、基方針は同じなのですが、横断チーム、ロジック開発だからこそある難しさもあり、そのあたりで少し工夫していることなどを書きたいと思います。 tech.gunosy.io ABテストの設計について ABテスト開始のために、タスク、KPI、拡大判断基準の設計をするようにしています。 タスク設計 仮説を立て、タスクのゴールを設定します。 ここでは、controlとtreatmentの差分を明確にすることと、contr

    Gunosy MLチームでのABテストの設計と運用 - Gunosyデータ分析ブログ
    takashabe
    takashabe 2019/08/29
  • 社内技術ブログのはじめかた - Gunosyデータ分析ブログ

    はじめに きっかけ 執筆計画を立てる 1. 分析に興味がある人のペルソナを書く 2. 1が検索するであろうクェリの一覧をつくる 3. 検索ボリュームしらべる 4. カテゴリ分け 5. 作るべき記事のリスト(記事タイトルまでだいたいきめちゃう)をつくる 6. 記事を書く担当者とスケジュール引く おまけ おわりに はじめに こんにちは。グノシー事業部の大曽根です。好きな曲はザ・ディランⅡの「男らしいってわかるかい」です。 この記事はGunosy Advent Calendar 2018の12日目の記事です。 昨日はhongmhoonさんのiOSでNotificationを非同期で送ろうでした。 最近、プライベートや採用面談などで「会社で技術ブログなどを書きたいけど始められない (or 始めたけど続かない)」という相談を受けるので、弊ブログが如何にして立ち上がったかをまとめたいと思います。 ※

    社内技術ブログのはじめかた - Gunosyデータ分析ブログ
    takashabe
    takashabe 2018/12/13
  • A/Bテストよりすごい?はじめてのインターリービング - Gunosyデータ分析ブログ

    はじめに こんにちは。メディアデータ分析部の飯塚(@zr_4)です。 弊社では現在、複数のニュース形式のアプリケーションを運用しており、各プロダクトでユーザーの趣向にあうような記事リストのパーソナライズを行っています。 左から:LUCRA、ニュースパス、グノシー そのため、記事のランキングに関するA/Bテストをする機会が多々あり「少数のユーザーで高速に有力なパラメータを探したい」というニーズがありました。 今回は上記ニーズを満たすべく、グノシーの番環境に導入したインターリービングを紹介します。 インターリービングとは 概要 インターリービングは高感度なランキング評価手法です。 実験的に、10倍から100倍従来のA/Bテストよりも効率的であることが知られています。*1 従来のA/Bテストにおいて、2つのランキングリストを評価する際は、ユーザを2つの群に分け各々に別々のランキングリストを提示

    A/Bテストよりすごい?はじめてのインターリービング - Gunosyデータ分析ブログ
    takashabe
    takashabe 2018/10/15
  • ニュースパスを支える関連記事推薦と近似近傍探索 - Gunosyデータ分析ブログ

    こんにちは。メディアロジック分析部の米田 (@mathetake) です。 今日はGunosy社とKDDI社が共同で運営するニュースパスというニュースアプリケーションで使われている関連記事推薦のアルゴリズムについて書きたいと思います。 特に、約半年前に私が導入しKPIの改善に成功した新しいアルゴリズムと、そこでコアとなる近似近傍探索(Approximate Nearest Neighbor search)の技術について述べます。 関連記事推薦とは この記事で紹介する関連記事推薦とは、「特定のニュースに関連したニュースを推薦すること」です。 より具体的には、特定の記事をクリックした後に記事閲覧画面を下にスクロールすると登場する「おすすめ記事」の枠に対して、関連したニュースを検索して表示することを指します: このような枠が設置されている事は一般的なアプリケーションにおいてごく自然ですが、推薦シ

    ニュースパスを支える関連記事推薦と近似近傍探索 - Gunosyデータ分析ブログ
    takashabe
    takashabe 2018/09/28
  • プロダクト改善のためにウォッチしておくべき7つの指標 - Gunosyデータ分析ブログ

    データ分析部でグノシーというニュースアプリのプロダクト改善を担当している @ij_spitz です。 今回はプロダクト改善のためにウォッチしておくべき7つの指標をSQLで算出してみます。 Gunosyではこれらの指標を、プロダクトに異常があった時に検知するため、また施策の効果検証といった主に2つの目的で使用しています。 簡潔にするため、ユーザーとログインの2つのテーブルを使った算出できる指標のみを対象としています。 また、これらの指標をどうやってプロダクト改善に役立てているのかということも少しではありますが、合わせて書いていきたいと思います。 DAU WAU(MAU) HAU 積み上げHAU 1ユーザーあたりのログイン回数 登録N日後継続率 登録日別N日後継続率 前提 今回のブログで紹介するSQLAmazon Redshift上で動くSQLなので、MySQLGoogle BigQuer

    プロダクト改善のためにウォッチしておくべき7つの指標 - Gunosyデータ分析ブログ
    takashabe
    takashabe 2018/05/17
  • アプリログの自動異常検知を試してみた~密度比による異常検知入門~ - Gunosyデータ分析ブログ

    Gunosyデータ分析部アルバイトの鈴木です。今回は密度比を利用したバージョンリリースにおける異常検知について学んだことをまとめたいと思います。 やりたいこと 超長期的にやりたいこと 密度比を用いた異常検知のイメージ ダミーデータでの実装例1 今回試したやり方 今後試していくやり方 ダミーデータでの実装例2 密度比の平均二乗誤差を用いる場合 直接密度比推定する場合 参考資料 やりたいこと ニュースパス(Gunosyの提供するプロダクトの一つ)をバージョンアップした時に、もし異常があればユーザーアクションログからその兆候を見つけてslackなどに通知できるようにすることが目標です。 (QA項目以外でのログ欠損やアップデートによる予期せぬユーザ行動の検知をするためです。) 現在Gunosyでは、バージョンアップ時に異常がないかどうか調査するために人手を割いています。しかし、もし自動で異常を確実

    アプリログの自動異常検知を試してみた~密度比による異常検知入門~ - Gunosyデータ分析ブログ
    takashabe
    takashabe 2018/01/11
  • 1