タグ

2014年1月16日のブックマーク (3件)

  • Latent Dirichlet Allocation(LDA)を用いたニュース記事の分類 | SmartNews開発者ブログ

    株式会社ゴクロの中路です。 以前のベイズ分類をベースにしたSmartNewsのチャンネル判定で触れたように、SmartNewsで配信する記事を「スポーツ」「エンタメ」「コラム」のようなチャンネルに分類しているのは、人ではなく機械です。そのアルゴリズムとして前回ご紹介したのは「ナイーブベイズ分類器」ですが、記事の分類を行う手法は、他にも様々なものがあります。その中で今回はLatent Dirichlet Allocation(以下LDA)について、先日東京大学の博士課程の皆さんと、社内で合同勉強会を行った際に作成した資料をベースにご紹介します。 LDAでできることの例 前回ご紹介したナイーブベイズ分類器を構築する際には、すでにトピックのラベルが付けられた文章を、学習データとして用意する必要がありました。 一方、LDAの場合は、 東京でサッカー大会が開催された。xx選手のゴールが圧巻であった。

  • ベイズ分類をベースにしたSmartNewsのチャンネル判定 | SmartNews開発者ブログ

    株式会社ゴクロの中路です。普段は機械学習の手法を用いたアルゴリズム改善など、サーバーサイドの開発を行っています。 SmartNewsでは様々なニュース記事を「エンタメ」「スポーツ」「グルメ」などのチャンネルに分けて表示しています。そのようなことを可能にするためには、ニュース記事がどのチャンネルに属するのかを判断する必要があるわけですが、それを行っているのは人ではありません。機械が、アルゴリズムに基づいて、自動的に行っています。 今回のエントリーでは、その「自動的にチャンネルに分類する仕組み」について書こうと思います。 SmartNewsにおける、ニュース記事のチャンネル判定を単純化すると、ベースには「ナイーブベイズ分類器」と呼ばれる、機械学習の初歩的な知見があります。このエントリーではナイーブベイズ分類器をメイントピックとして取り上げます。ナイーブベイズ分類器については、すでに様々なとこ

  • 機械学習の理論と実践

    SACSIS2013でのチュートリアル講演資料です。機械学習の導入:背景、手法、理論、応用)、実践:オンライン学習+線形分類で実際作ってみる、使う際の課題、発展:分散+リアルタイムでの機械学習(Jubatus)、深層学習(Deep Neural Net)についてまとめましたRead less

    機械学習の理論と実践