タグ

ブックマーク / www.neuro.sfc.keio.ac.jp/~masato (1)

  • ラグランジュの未定乗数法

    ラグランジュの未定乗数法 戻る SVMについての記事を読んでいて絶対に避けて通れないのが,ラグランジュの未定乗数法だ.なんたって,これを使うことで「サポートベクトル」の決定が可能になるんだから,これがわからなくっちゃ始まらない. ラグランジュの未定乗数法がどうやって導出されたか,っていうことはここでは説明しない.どのようなものか,だけを述べる. ラグランジュの未定乗数法の定義 個の変数を要素として持つ変数列に関して個の制約条件 が与えられていたとする. この制約条件の下で関数が極値をとるようなを求めたいとき,もうひとつの変数列を使って次のような関数を考える. この関数の極値条件 を満たす解の中にある.ここでをラグランジュの未定乗数という. 「難しくってわかんねーよ」という人,ちょっと待っておくれ.小難しい書き方に惑わされてはいけない.これはそんなに難しいものではないんだ

  • 1