タグ

algorithmとDataMiningに関するtanakaBoxのブックマーク (5)

  • BLOG::broomie.net: 機械学習の勉強を始めるには

    thriftとかhadoopなど,何やらいろいろと手を出してしまい,ここのところブログの更新が滞ってしまっていますが,今日は前から書きたかったトピックについて自分へのメモの意味も含めて記しておきたいと思います. はじめに 最近,といっても結構前からなのですが,海外のブログなどで「機械学習の勉強を始めるガイドライン」についてのエントリーがいくつか見られ,かつ,議論も少し盛り上がっています.僕は機械学習が好きなだけで,専門というにはほど遠いのですが,僕も一利用者としてはこのトピックに関してはとても興味があります. 機械学習というと,色々な数学的な知識が必要であったり,統計学や人工知能の知識も必要になったりしまったりと,専門的に学ぶ機会が無かった人にとっては興味が湧いてもなかなか始めるには尻込みしてしまうことかと思います.今日紹介するエントリーは,そんな方々にヒントになるような内容になっていると

  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure
    tanakaBox
    tanakaBox 2009/09/15
    集合知による補完。エロへの応用しか思いつかんw
  • 『Blogopolisの裏側』発表資料 - kaisehのブログ

    昨日のSeasar Conference 2009 Autumnで発表させていただいた『Blogopolisの裏側』の資料を公開します。 Blogopolisの裏側View more documents from kaiseh. 資料の28枚目に、重み付きボロノイ図の重心ベースレイアウトの説明用動画がありました。その動画は以下にアップしました。 講演者の皆さん、運営の皆様、当にお疲れ様でした! 追記 id:mi-changさん p14ででてる「頂点数」、「多角形数」って何を意味してるんだろう?頂点数が多いということはより多くのタグと結びついているってこと? これは、1つ1つのエントリーやブログ、地区(カテゴリ)に対応する土地の幾何データのことです。例えば、5角形の土地の場合は5個の頂点座標が必要になります。土地の頂点数はレイアウト上の理由で決まるもので、タグとは直接関係はありません。

    『Blogopolisの裏側』発表資料 - kaisehのブログ
    tanakaBox
    tanakaBox 2009/09/15
    数値化手法がお役立ち。
  • FrontPage - 情報論的学習理論と機械学習の「朱鷺の杜Wiki」

    朱鷺の杜Wiki(ときのもり うぃき)† 朱鷺の杜Wikiは,機械学習に関連した,データマイニング,情報理論,計算論的学習理論,統計,統計物理についての情報交換の場です.これら機械学習関係の話題,リンク,関連事項,書籍・論文紹介などの情報を扱います. 更新されたページを確認するにはRSSリーダを使って右下のRSSリンクをチェックするか,最終更新のページを参照してください. ページの中でどこが更新されたかを見るには,上の「差分」をクリックして下さい. 数式の表示に MathJax を利用しています.数式の上でコンテキストメニューを使うと各種の設定が可能です.特に設定をしなくても数式は閲覧できますが,フォントをインストールすれば数式の表示がきれいで高速になります.詳しくは 数式の表示 のページを参照して下さい. ごく簡単なWikiの使い方がこのページの最後にあります.トップページやメニューなど

    tanakaBox
    tanakaBox 2009/09/02
    情報論的学習理論,機械学習,統計,統計物理,データマイニング
  • 軽量データクラスタリングツールbayon - mixi engineer blog

    逆転検事を先日クリアして、久しぶりに逆転裁判1〜3をやり直そうか迷い中のfujisawaです。シンプルなデータクラスタリングツールを作成しましたので、そのご紹介をさせていただきます。 クラスタリングとは クラスタリングとは、対象のデータ集合中で似ているもの同士をまとめて、いくつかのグループにデータ集合を分割することです。データマイニングや統計分析などでよく利用され、データ集合の傾向を調べたいときなどに役に立ちます。 例えば下図の例ですと、当初はデータがゴチャゴチャと混ざっていてよく分からなかったのですが、クラスタリングすることで、実際は3つのグループのデータのみから構成されていることが分かります。 様々なクラスタリング手法がこれまでに提案されていますが、有名なところではK-means法などが挙げられます。ここでは詳細については触れませんが、クラスタリングについてより詳しく知りたい方は以下の

    軽量データクラスタリングツールbayon - mixi engineer blog
    tanakaBox
    tanakaBox 2009/09/02
    クラスタリングツール
  • 1