タグ

ブックマーク / www.yasuhisay.info (6)

  • 最近の砂場活動その9: Cognitoで認証済みのユーザーでAPI Gatewayを呼び出す - yasuhisa's blog

    ML NewsのWeb UIにアノテーションボタンを付けたい、でもユーザー管理機能は作りたくない(アノテーションするのは自分だけなので)。AWSのCognitoとAPI Gatewayを組み合せると簡単にできると聞いたので、やってみました。色々てこずったので正直あまり簡単ではなかったけど、やりたかったことはできたのでメモとして書き残しておきます。 やりたいことは以下。 AWSの仕組みでいい感じにユーザー認証されたい 認証の仕組みを自前でやりたくない 認証されたユーザーのみが叩けるエンドポイントを工数少なく実現したい API Gatewayで所望のエンドポイントを生やす ロジックをLambdaに書く API Gatewayの設定 Cognitoの設定 Amplifyで認証されたユーザーのみにアノテーションボタンを見せる Cognitoで認証されたユーザーのみAPI Gatewayを呼び出せる

    最近の砂場活動その9: Cognitoで認証済みのユーザーでAPI Gatewayを呼び出す - yasuhisa's blog
  • 2018年の砂場活動振り返り - yasuhisa's blog

    インフラやミドルウェアにとにかく苦手意識があるが、仕事的にいつまでもそう言ってられない。そこで、最悪全部ぶっ壊れても大丈夫な砂場を作り、そこを土台に活動をするというのを2018年の目標に設定していた。 結構な時間をかけたこともあり、それなりの砂場と活動ができて、自分としても勉強になってよかった点が多かったので振り返りを書きます。一個一個ちゃんとエントリ書いていたので、振り返りが楽で助かった。 完成系はML Newsだけど、2018年1月時点では そもそもWebアプリですらなくCLIアプリだった データの管理もデータベースではなくテキストファイル という素朴な作りだった。 インフラ編 最初はCLIアプリをWebアプリにする活動をやったが、その後はAWS上にインフラ部分の構築を進めた。 次に一台のEC2をAWSコンソールから立てて、sshでログインしてyumコマンドを打って...という10年前

    2018年の砂場活動振り返り - yasuhisa's blog
  • 社内でKaggleの布教活動をやっている話 - yasuhisa's blog

    最近、社内勉強会で機械学習についてエンジニアに説明する機会があり、その際にKaggleについても説明しました。一方で うーん、「Kaggler はパラメータチューニングやアンサンブル等の自明でインクリメンタルな改善『しか』できない」というような誤解はどうやって解いていけばいいんだろう。— im132nd (@im132nd) 2018年4月4日 という話もあり、(特にデータサイエンティスト以外の職種の人が)Kaggleをやる意義/メリットについてまとめてみました。ガッと勢いで書いたので、項目に結構被りがあります。なお、書いている人はKaggleほぼ初心者であまり説得力がないです。Kaggle Masterの人がもっといいエントリを書いてくれるのを期待しています、議論の叩き台エントリです!! Kaggleをやる意義/メリット 様々なデータセットを触ることができる kernelでデータ分析

    社内でKaggleの布教活動をやっている話 - yasuhisa's blog
  • KaggleのCTR予測コンペで上位10%に入るまでの試行錯誤 - yasuhisa's blog

    週末KagglerとしてavazuのCTR予測コンペに参加しました。Kaggleは機械学習版のISUCONだと思ってもらえばよいです。コンペ自体は終わっているので、late submiteであまり意味はないかもしれません、練習です。leaderboard上で上位10%以内に行けたので、そこまでの試行錯誤をメモしておきます。謎ノウハウ(?)を持っているガチ勢じゃないと上位に行けないものかと思っていましたが、基に忠実にやればこれくらいの順位(上位7.6%)に行けましたし、他の人の工夫を垣間見えるという意味でも現場の機械学習やり始めたエンジニアにお薦めできそうでした。 参加の動機 目標感: 頑張りすぎずに上位10%以内に入る 試行錯誤 AthenaとRedashによる探索的データ解析 ベンチマークをまず超える 線形分類器でシンプルな特徴量 時系列要素を忘れていて過学習発生 特徴量エンジニアリン

    KaggleのCTR予測コンペで上位10%に入るまでの試行錯誤 - yasuhisa's blog
  • 能動学習で効率的に教師データを作るツールをGoで書いた - yasuhisa's blog

    みなさん、教師データ作ってますか?! 機械学習のツールも多くなり、データがあれば簡単に機械学習で問題を解ける環境が整ってきました。しかし、データ作成は重要ながらも未だに大変な作業です。最近、私もいくつかのドメインで教師データを作る機会があったので、能動学習を使ってコマンドラインから簡単に教師データ作成(アノテーション)ができるツールを作ってみました。 今回は能動学習で教師データを作る意義と、作ったツールの使い方について簡単に書きます。 問題設定 能動学習を使って教師データを効率的にアノテーション go-active-learningを試してみる ダウンロード/インストール 能動学習でアノテーション おまけ: Go言語を使って得られた効用/感想 問題設定 例があったほうが説明しやすいので、問題設定を先に。 あなたはエンジニアが集まるSlackチャンネルに、最近人気の技術エントリを定期的に投稿

    能動学習で効率的に教師データを作るツールをGoで書いた - yasuhisa's blog
  • はてな社内の勉強会で構造学習について発表しました - yasuhisa's blog

    先週末、はてな社内の勉強会で構造学習、特に実装が簡単な構造化パーセプトロンについて発表しました。発表資料と説明用にサンプルで書いたPerlの品詞タグ付けのコードへのリンクを張っておきます。 今日からできる構造学習(主に構造化パーセプトロンについて) from syou6162 structured_perceptron/structured_perceptron.pl at master · syou6162/structured_perceptron 「えっ、Perlかよ」という人がいるといけないので、Clojureで構造化パーセプトロンを使った係り受け解析のサンプルコードへのリンクも張っておきます(2種類あります)。PerlもClojureもあれば8割くらいの人はカバーできそうなので、安心ですね。 syou6162/simple_shift_reduce_parsing syou616

    はてな社内の勉強会で構造学習について発表しました - yasuhisa's blog
  • 1