タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

algorithmとirに関するtettsyunのブックマーク (3)

  • Top-k文書列挙問題 - DO++

    いろいろとありまして去年読んだ論文で面白かったものランキングとか書けなかったのが残念ですが、もしあげるとしたら次の論文は入れると思います(知ったのは年明けだったけど)。 "Space-Efficient Framework for Top-k String Retrieval Problems", FOCS 2009, Wing Kai Hon, Rahul Shah and Jeffrey Scott Vitter (pdf) 扱っているのは次のような問題です(説明のため来のと言い換えています) n個の葉からなる木が入力として与えられ,各葉には色(1以上d以下の整数とします)が与えられています. この時、木中の任意の節点と正整数kがクエリとして与えられたときに、その節点の子孫の中で出現回数が大きい色を順にk個答えよという問題です。 簡単に思いつくのは,各節点に適当な個数(d)の答えをあ

    Top-k文書列挙問題 - DO++
  • Latent Semantic Indexing - naoyaのはてなダイアリー

    情報検索におけるベクトル空間モデルでは、文書をベクトルとみなして線形空間でそれを扱います。この文書ベクトルは、文書に含まれる単語の出現頻度などを成分に取ります。結果、以下のような単語文書行列 (term document matrix) が得られます。 d1 d2 d3 d4 Apple 3 0 0 0 Linux 0 1 0 1 MacOSX 2 0 0 0 Perl 0 1 0 0 Ruby 0 1 0 3 この単語文書行列に対して内積による類似度などの計算を行って、情報要求に適合する文書を探すのがベクトル空間モデルによる検索モデルです。 見ての通り、単語文書行列の次元数は索引語の総数です。文書が増えれば増えるほど次元は増加する傾向にあります。例えば索引語が100万語あって検索対象の文書が 1,000万件あると、100万次元 * 1,000万という大きさの行列を扱うことになりますが、単

    Latent Semantic Indexing - naoyaのはてなダイアリー
  • 3行でできる超お手軽全文検索 - mixi engineer blog

    梅雨。部屋干しした洗濯物による異臭騒ぎに苦しむmikioです。今回は、Tokyo Cabinetのテーブルデータベースで超お手軽に全文検索をする方法について説明します。 使い方 テーブルデータベースについてまずおさらいしておきましょう。PerlRubyのハッシュのようにコラム名とその値を関連づけた構造を、主キーを識別子として保存するデータベースです。例えばRubyからデータを保存するに以下のように行います。データベースであることをほとんど意識させないというのが素敵ポイントです。APIはCでもPerlでもRubyでもほとんど同じなので、言語にかかわらず同じようにレコードを操作できます。 require 'tokyocabinet' include TokyoCabinet # データベースを開く tdb = TDB::new tdb.open("casket", TDB::OWRITER

    3行でできる超お手軽全文検索 - mixi engineer blog
  • 1