タグ

機械学習に関するtk78のブックマーク (38)

  • Colabで動かすStableDiffusion実装|深津 貴之 (fladdict)

    自分がつかってる、Google ColabStableDiffusion環境を公開しました。 海外のWEB UIのが重いのと、やりたいことが微妙に違うので自分なりに作った。公式のDiffuserを使わないので軽いです。無課金のcolabでも動くのではないかと思います。 使い方GitHubページの「Open in Colab」ボタンをおして、colabで開く。 このページ上部のメニューで、「ランタイム > ランタイムのタイプを変更」からGPUを有効化を確認 HuggingFaceでアカウントを作成 StableDiffusionのモデルページで、「利用規約」に合意する。 モデルファイル sd-v1-4.ckpt をダウンロード モデルファイルを Google Drive等にアップロード 下のセル 「1-1. Google Driveとの接続」を実行 下のセル 「1-2. のフォーム」に、G

    Colabで動かすStableDiffusion実装|深津 貴之 (fladdict)
  • Midjourney、Stable Diffusion、mimicなどの画像自動生成AIと著作権|知的財産・IT・人工知能・ベンチャービジネスの法律相談なら【STORIA法律事務所】

    ホーム ブログ 人工知能(AI)、ビッグデータ法務 Midjourney、Stable Diffusion、mimicなどの画像自動生成AIと著作権|知… はじめに Midjourney、Stable Diffusion、mimicなど、コンテンツ(画像)自動生成AIに関する話題で持ちきりですね。それぞれのサービスの内容については今更言うまでもないのですがMidjourney、Stable Diffusionは「文章(呪文)を入力するとAIが自動で画像を生成してくれる画像自動生成AI」、mimicは「特定の描き手のイラストを学習させることで、描き手の個性が反映されたイラストを自動生成できるAIを作成できるサービス」です(サービスリリース後すぐ盛大に炎上してサービス停止しちゃいましたが)。 で、この手の画像自動生成AIのようなコンテンツ自動生成AIですが、著作権法的に問題になる論点は大体決ま

    Midjourney、Stable Diffusion、mimicなどの画像自動生成AIと著作権|知的財産・IT・人工知能・ベンチャービジネスの法律相談なら【STORIA法律事務所】
  • 君には今から3時間で機械学習Webアプリを作ってもらうよ

    新人: 「日データサイエンス部に配属になりました森です!」 先輩: 「お、君が新人の森さんか。僕が上司の馬庄だ。よろしく!」 新人: 「よろしくお願いします!」 先輩: 「さっそくだけど、練習として簡単なアプリを作ってみようか」 先輩: 「森くんは Python なら書けるかな?」 新人: 「はい!大学の研究で Python 書いてました!PyTorch でモデル作成もできます!」 先輩: 「ほう、流石だね」 新人: 😊 先輩: 「じゃ、君には今から 3 時間で機械学習 Web アプリを作ってもらうよ」 先輩: 「題材はそうだなぁ、写真に写ってる顔を絵文字で隠すアプリにしよう」 先輩: 「あ、デプロイは不要。ローカルで動けばいいからね。顔認識と画像処理でいけるよね?」 新人: 😐 新人: (えぇぇぇぇぇぇぇ。3 時間?厳しすぎる...) 新人: (まずモデルどうしよう。てかもら

    君には今から3時間で機械学習Webアプリを作ってもらうよ
  • はじめに — 機械学習帳

    import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)

    はじめに — 機械学習帳
  • 「仕事ではじめる機械学習 第2版」を読んで思った「ソフトウェアエンジニアとデータサイエンティスト, ML Ops」のこと - Lean Baseball

    このエントリーのテーマです このエントリーは, 「仕事ではじめる機械学習 第2版」出版お祝いのエントリーとなります. 仕事ではじめる機械学習 第2版 作者:有賀 康顕,中山 心太,西林 孝オライリージャパンAmazon 私自身, 第1版登場の2018年頃*1から「機械学習エンジニア」「企画・提案のフェーズから機械学習プロジェクトを回すマン」など, まさに機械学習仕事とするロール・立ち位置で働いたり個人開発をしたりしていた身として, 色んな場面で参考にしていた書籍の待望の第2版登場で嬉しいです. 待ちに待った仕事ではじめる機械学習第2版、戴きました🙏 週末読んで感想書くぞ📕 pic.twitter.com/66mcTzxja5— Shinichi Nakagawa / 中川 伸一 / Senior Engineer (@shinyorke) 2021年4月15日 縁あって著者の皆様およ

    「仕事ではじめる機械学習 第2版」を読んで思った「ソフトウェアエンジニアとデータサイエンティスト, ML Ops」のこと - Lean Baseball
  • Japan: COVID-19 Public Forecasts

    Looker Studio turns your data into informative dashboards and reports that are easy to read, easy to share, and fully customizable.

    Japan: COVID-19 Public Forecasts
  • COVID-19 感染予測 (日本版) の公開について | Google Cloud 公式ブログ

    Google Cloud は今年 8 月に Harvard Global Health Institute とのパートナーシップのもとで COVID-19 Public Forecasts を公開しました。このサービスは予測開始日から将来 14 日間における米国内の COVID-19(新型コロナウイルス感染症)陽性者数や死亡者数などの予測を提供しています。この度、サービスを日にも拡張し、COVID-19 感染予測(日版)の提供を開始します。日版では予測開始日から将来 28 日間のあいだに予測される国内の陽性者数や死亡者数等の予測値を表示します。 米国で提供している COVID-19 Public Forecasts は AI と膨大な疫学的データを組み合わせ、さらに、時系列の予測を扱う斬新な機械学習のアプローチを採用することで実現しました。米国向けのこの初期モデルは今年 8 月に初

    COVID-19 感染予測 (日本版) の公開について | Google Cloud 公式ブログ
  • 機械学習で競馬の回収率100%超えを達成した話 - Qiita

    はじめに みなさん競馬はお好きでしょうか? 私は今年から始めた初心者なのですが、様々な情報をかき集めて予想して当てるのは当に楽しいですね! 最初は予想するだけで楽しかったのですが、『負けたくない』という欲が溢れ出てきてしましました。 そこで、なんか勝てる美味しい方法はないかな〜とネットサーフィンしていたところ、機械学習を用いた競馬予想というのが面白そうだったので、勉強がてら挑戦してみることにしました。 目標 競馬の還元率は70~80%程度らしいので、適当に買っていれば回収率もこのへんに収束しそうです。 なのでとりあえず、出走前に得られるデータを使って、回収率100パーセント以上を目指したいと思います! 設定を決める 一概に競馬予測するといっても、単純に順位を予測するのか、はたまたオッズを考えて賭け方を最適化するのかなど色々とあると思います。また、買う馬券もいろいろな種類があります。 今回

    機械学習で競馬の回収率100%超えを達成した話 - Qiita
  • 最近のポケモンはデジモンっぽいのか、ディープラーニングに聞いてみた - Qiita

    はじめに ポケモンについて何となく知っている人向けの記事です(デジモンは知らなくてOK) 3月ごろにポケモンたかさおじさんが集計したアンケートの分析をお手伝いしたところ、アンケートの自由記述回答の6353件中、155件もデジモンについて言及するコメントがあった。 「デジモンと区別付かないよね」 「もはやポケモンじゃない…。デジモン…。昔のデザインに戻ってほしいなぁ…。。。」 「主観ですが、伝説のポケモンが角張った印象で、デジモンのような印象を受ける。」 「全体的に毛がなさそうなツルッとしたフォルムの子達が増えた気がします。デジモンっぽい」 「デザインがごちゃごちゃしすぎて子供が描くのが難しい デジモンに近くなってきている」 「ダイパまでのデザインがポケモンっぽいデザイン。それ以降はデジモンみたいな雰囲気。」 私は幼少期からポケモンには触れてきたが、デジモンにはあまり縁がなかったため、 デジ

    最近のポケモンはデジモンっぽいのか、ディープラーニングに聞いてみた - Qiita
  • 機械学習による株価予測 いろはの”ろ” - Qiita

    はじめに 前回記事「機械学習による株価予測 いろはの"い"」の公開後、筆者の機械学習モデルの獲得利益はめでたく1億を突破することができた。運用モデルの概要については筆者のブログにて紹介したが、折角の機会なので技術的な内容についてここに続編を執筆する。今回の記事では、株価を予測するための特徴量についてその考え方をまとめる。 特徴量の種類 個別銘柄を説明するための代表的なデータとは、財務諸表とチャート(価格系列)である。一昔前は個人投資家がこれらのデータを揃えるのにかなりの苦労が必要だった(特に財務諸表が面倒であった)が、最近ではQiitaでXBRL用のライブラリが紹介されていたり、バフェットコードでAPI(有料)が提供されていたりと、随分と手間要らずになってきたように思う。 個別銘柄を説明するための材料についてさらに進んだ話をすると、IRを自然言語処理に掛けてセンチメントを抽出したり、経営陣

    機械学習による株価予測 いろはの”ろ” - Qiita
  • 機械学習モデルを作成する - Training

    Microsoft Learn では、対話的な方法で、従来の機械学習の概要を理解することができます。 これらのラーニング パスは、ディープ ラーニングのトピックに移行するための優れた基盤にもなり、各自の生産性を向上させます。 最も基的な従来の機械学習モデルから、探索的データ分析やカスタマイジングのアーキテクチャまで、ブラウザーを離れることなく、概念的内容や対話型の Jupyter Notebook を簡単に把握することができます。 知識と興味に応じて自分のパスを選択してください。 オプション 1: 完全なコース: 機械学習のためのデータ サイエンスの基礎 ほとんどのユーザーには、このパスがお勧めです。 これには、概念の理解を最大限に高めるカスタム フローを備えた、他の 2 つのラーニング パスと同じモジュールがすべて含まれています。 基になる概念と、最も一般的な機械学習ツールでモデルを構

    機械学習モデルを作成する - Training
  • 機械学習で使用する手法を全公開 - Qiita

    株式会社デジサク がお送りするプログラミング記事、 今回はAI(機械学習)について扱っていこうと思います。 ※ 無料セミナーも開催中なので、ぜひご覧になってみて下さい。 はじめに kaggleや学習サイトなど誰でも機械学習を学べる機会が増えてきました。 その反面、情報量が多すぎて全体感を掴めていない人が多いと感じています。 そこで、様々な参考書や記事で紹介されている機械学習で使用する手法を全公開しようと思います。 細かなコーディングはリンクを貼っておくので、そちらを参照されてください。 SNS でも色々な情報を発信しているので、記事を読んで良いなと感じて頂けたら Twitterアカウント「Saku731」 もフォロー頂けると嬉しいです。 機械学習の一連手順 まず、機械学習を習得するために必要なスキルは下記です。 実務の場では数段細かな作業が必要になりますが、最初は下記を勉強するだけで十分で

    機械学習で使用する手法を全公開 - Qiita
  • 株AIを結構頑張ったら、儲かりそうな雰囲気が出ている - Qiita

    ABEJA Advent Calendarの10日目です。 はじめにのはじめに 以下は、あくまでテストデータで上手く行ってるよという話で、当にこれをやったら儲かるかというと、まだまだわかりませんのであしからず!あとネタがネタだけに、今回のはあくまで個人のやってみた記録であり、組織の取り組みとは関係ありません。 はじめに お金が欲しい!無限に寿司がいたい!株で儲けたい! 研究やエンジニアリングをしながら生きてく上で、将来のキャリアや技術スタックについて日々考えてるんですが、よくよく原点に立ち返るとそもそも技術スタックとかどうでもよくて、好きなものを作って漫画読んで生きていきたいんです。つまり結局、世の中は金なんですよね金。なので、何とかして寝てても圧倒的に儲かる仕組みを作りたい!そんな気持ちで私利私欲のために機械学習を使ったという記録です。 以下は、今回紹介する方法で実験したテストデータ

    株AIを結構頑張ったら、儲かりそうな雰囲気が出ている - Qiita
  • ディープラーニングさえあれば、競馬で回収率100%を超えられる - Qiita

    pohotos by Ronnie Macdonald **「AIが人間の仕事を奪う」と言われ始めてしばらく経ちますが、今や「幻滅期に入った」**なんて言われ方もしています。おかげで僕は仕事を奪われることもなく、毎日満員電車に揺られています。奪う奪う詐欺もいいとこです。 そんなAIの発展にはもう少し時間がかかりそうな一方で、学べる環境は簡単に手に入るようになりました。触るなら、皆が幻滅しかかっている今な気もします。ということで、今更ですがAIの力を知るべく、ディープラーニングに触れてみることにしました。 いろいろ試したのですが、ここでは結果をメインに**「無知の状態から勉強しても、ディープラーニングでこれぐらいは楽しめるよ」**ということを伝えてみます。プログラムはお手になるようなものではないので、見たい人だけに有料で公開してみます。 Kaggleでディープラーニングのお手並み拝見 最初

    ディープラーニングさえあれば、競馬で回収率100%を超えられる - Qiita
  • なるほどそうか、「機械学習モデル」を高1数学で理解する

    機械学習をマスターする上でカギとなる、「損失関数」。機械学習モデルにおいて、予測値と正解値(正解データ)がどの程度近いかを示す指標となる関数です。 そのイメージをより具体的に持つため、簡単な例題をここで扱ってみましょう。解を導き出すのに少し時間がかかりますが、「偏微分」などの高度な数学は全く使いません。 2次関数など高校1年生レベルの数学をおさらいしながら解説していきます。一通り読めば、「数学を使って機械学習モデルを解く」というイメージがつかめるので、ぜひ解を導くところまで読み進めてください。 題材として「単回帰」と呼ばれる、1つの実数値の入力(x)から1つの実数値(y)を予測するモデルを取りあげます。具体的な処理内容としては、成年男子の身長x(cm)を入力値に、体重y(kg)を出力値とするようなモデルを考えることにします。モデルの内部構造は「線形回帰」と呼ばれるもので考えます。 線形回帰

    なるほどそうか、「機械学習モデル」を高1数学で理解する
  • 機械学習で「地動説」は生まれない。天才少年が「AIは存在しない」と主張する理由 | Ledge.ai

    機械学習を誰でもアクセスできるようにしたい。そのために世界中をこうして講演して回っています」 その少年は、若干15歳とは思えない口ぶりで聴衆に語り始めた。 インド生まれの天才少年タンメイ・バクシ。5歳からコードを書くようになり、9歳でiOSの時刻表アプリを開発。プログラミングに取り憑かれた。 そのときの経験をもとにプログラミング言語「Swift」についてのも出版。YouTubeチャンネル「Tanmay Teaches」を立ち上げ、アプリ開発、数学から科学に至るまでの情報を発信し、現在はIBMチャンピオン(IBMのソリューションやソフトウェアに対し、年間を通してそのテクニカル・コミュニティーに優れた貢献をしてきた支持者)として世界中を飛び回る生活を送る。 「将来は10万人がプログラミングを学べるように助けたい」と語る少年が、2019年3月14日、15日にかけて開催されたビジネスカンファレ

    機械学習で「地動説」は生まれない。天才少年が「AIは存在しない」と主張する理由 | Ledge.ai
  • Magenta

    An open source research project exploring the role of machine learning as a tool in the creative process. Magenta Studio has been upgraded to more seamlessly integrate with Ableton Live. It is a collection of music creativity tools built on Magenta’s open source models, using cutting-edge machine learning techniques for music generation. Read the blog post.

    Magenta
  • ディープラーニング入門:Chainer チュートリアル

    Chainer チュートリアル 数学の基礎、プログラミング言語 Python の基礎から、機械学習・ディープラーニングの理論の基礎とコーディングまでを幅広く解説 ※Chainerの開発はメンテナンスモードに入りました。詳しくはこちらをご覧ください。 何から学ぶべきか迷わない ディープラーニングを学ぶには、大学で学ぶレベルの数学Python によるプログラミングの知識に加えて、 Chainer のようなディープラーニングフレームワークの使い方まで、幅広い知識が必要となります。 チュートリアルは、初学者によくある「まず何を学べば良いか」が分からない、 という問題を解決するために設計されました。 初学者は「まず何を」そして「次に何を」と迷うことなく、必要な知識を順番に学習できます。 前提知識から解説 このチュートリアルは、Chainer などのディープラーニングフレームワークを使ったプログ

    ディープラーニング入門:Chainer チュートリアル
  • 無料で拾える機械学習系の本のPDFまとめ - とある京大生の作業ログと日々の雑記

    最近はツイッターでいろんな人に普段どんな感じで勉強してるのかということを聞かれるのですが、ぼくはだいたいネットでPDFを拾ってきて読んでます。 そこでぼくが今まで読んだ中で良さげな機械学習系ののリンクをまとめておこうと思います。 ちなみに全て英語ですので日語じゃないとやだ〜〜〜って泣いちゃう方はタブを閉じるか日語訳を書店で探してきてください。 PRML (Pattern Recognition and Machine Learning) Pattern Recognition and Machine Learnng www.microsoft.com まず1冊目はみんな大好きPRML。 機械学習というよりかはベイズのと言っていいようなお気持ちもあるのですが、基礎力として非常にいいだと思います。 特にグラフィカルモデルの章はめちゃくちゃ読み応えあるので個人的には大好きな一冊。

    無料で拾える機械学習系の本のPDFまとめ - とある京大生の作業ログと日々の雑記
  • 年末のご挨拶と近況、あるいは機械学習のはじめ方 - 怠惰を求めて勤勉に行き着く

    あ、退職エントリとかではないです。雑多な駄文をお許しください。 2018年を振り返る 3月にカリフォルニア州パロアルトのラボに異動になって早くも3/4年が経ちました。 自分としてはまだ1年経ってないのかという感じです。もっと長く居るような気もするが、来たばかりのような感じもある。 生活には完全に慣れました。結局の所、生きていくだけなら "You need a bag?" に "No" だけ言えれば何とかなります。 家族のこと、子供のこと 家族が適応に苦しんでいます。特に子供は、8月からTKという公立小学校の下部組織に通っていますが、予想を遥かに超えて心を閉ざしたままです。 娘はとてもシャイで、思ったことが口にできません。非常に端的に言うと、生きる力が強くありません。象徴的なできごとが幾つかありました。 ある日、先生が陪審員の義務で代わりの先生が来た日、普段とは違う教室に預けられた。 お昼に

    年末のご挨拶と近況、あるいは機械学習のはじめ方 - 怠惰を求めて勤勉に行き着く