タグ

ブックマーク / www.ajimatics.com (2)

  • 「2乗してはじめて0になる数」とかあったら面白くないですか?ですよね - アジマティクス

    「その数自体は0でないのに、2乗するとはじめて0になる数」ってなんですか? そんな数あるはずがないと思いますか? でももしそんな数を考えることができるなら、ちょっとワクワクすると思いませんか? 今回はそんな謎の数のお話。 実数の中には、「2乗して0になる数」というのは0しかありません。 (2乗して0になる実数は0しかない図) ということは、「2乗してはじめて0になる数」というのがあるとしたら、それは実数ではありえません。 「1年A組にはメガネの人はいないので、メガネの人がいたとしたらその人は1年A組ではありえない」くらいの当たり前のことを言っています。 この辺の議論は、複素数で「」を導入したときと同じですね。 「実数の中には、2乗して-1になる数というのは存在しないので、それがあるとしたら実数ではありえない」ということで「虚数」であるが導入されるわけです。 それならばということで、ここでは

    「2乗してはじめて0になる数」とかあったら面白くないですか?ですよね - アジマティクス
    tkoie
    tkoie 2021/03/23
  • 線形代数の知識ゼロから始めて行列式「だけ」理解する - アジマティクス

    この記事は、線形代数において重要な「行列式」の概念だけを、予備知識ゼロから最短距離で理解したい人のための都合のいい記事です。 そのため、わかっている人から見れば「大雑把すぎじゃね?」「アレの話するんだったらアレの話もしないとおかしくね?」という部分が少なくないかもですが、趣旨をご理解いただいた上でお付き合いください。明らかな間違いに関しては、ご指摘いただけますと助かります。 線形変換 ↑座標です。 座標を変形することを考えます。つまり、座標変換です。 座標変換にもいろいろあって、以下のようにグニュッと曲げたやつ も座標変換には違いありませんが、今回ここで考えるのは線形変換だけにします。線形変換とは大雑把に言えば「すべての直線を直線に保つ」「原点を動かさない」という条件を満たす変換です。 そういう変換には例として、伸ばしたり縮めたりの拡大・縮小(scale)、原点中心に回す回転(rotate

    線形代数の知識ゼロから始めて行列式「だけ」理解する - アジマティクス
    tkoie
    tkoie 2018/11/03
  • 1