今年の7月に開催されたSciPy2015の講演動画がEnthoughtのチャンネルで公開されている。今年も面白い講演が多いのでいろいろチェックしている。 今年の目標(2015/1/11)にPythonの機械学習ライブラリであるscikit-learnを使いこなすというのが入っているので、まずはscikit-learnのチュートリアルを一通り見ることにした。 Part IとPart IIを合わせると6時間以上あり非常に充実している。IPython Notebook形式の資料やデータは下記のGitHubアカウントで提供されている。ノートブックをダウンロードし、実際に手を動かしながらチュートリアルを進めると理解がより進むかもしれない。 あとで振り返りやすいように内容を簡単にまとめておきたい。 1.1 Introduction to Machine Learning 機械学習システムの流れ。教師あ
こんにちは。初心者です。 あるサービス(念写できる人と何か念写してほしい人のマッチングサービスです)で機械学習ためそうと思っていて、調べている最中です。 問題 試しに、これの1問目を解くよー。 教師あり学習の問題です。上記ページの回答例のように、SVMを使ってみます。 ライブラリは、scikit-learnを使ってみた。 SVM使いたいだけならほかにもライブラリあるみたいだけど、scikit-learnいいよ~的なことを言う人が多いので使ってみました。 とりあえずやってみる # -*- coding: utf-8 -*- from sklearn.svm import LinearSVC import numpy as np # 学習データ data_training_tmp = np.loadtxt('CodeIQ_auth.txt', delimiter=' ') data_train
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く