tl;dr 目的:なぜ簡単な問題においてパーセプトロンよりもSVMのほうが性能が良いことが多いのか、それは本当なのかを考察する。 特に、ラベルあたりのデータ数に偏りがある場合。 SVM、単層パーセプトロン、SVMと同じ損失関数の単層パーセプトロンで振る舞いを比較した。 定性的な評価だが、SVMがもっともよかった。少なくとも損失関数の違いだけではないことがわかった。 最適化法の違い、パラメータの選び方が効いているのかもしれない。 はじめに 線形SVM1は歴史ある分類器ながら、その強力さから現代でも広く使われています。分類器としては近年ニューラルネットワーク、特にニューラルネットワークを多層にかさねた深層学習が話題になっています。しかし、これはあくまでも感覚なのですが、がんばって訓練したニューラルネットワークよりも素朴な線形分類器であるSVMのほうが性能が高いことが多々あります。 線形SVMと
![なぜニューラルネットはSVMに勝てないのか - Qiita](https://cdn-ak-scissors.b.st-hatena.com/image/square/4d189e7de2ae32b2f70ae93a8786c6a9f14c9d26/height=288;version=1;width=512/https%3A%2F%2Fqiita-user-contents.imgix.net%2Fhttps%253A%252F%252Fqiita-user-contents.imgix.net%252Fhttps%25253A%25252F%25252Fcdn.qiita.com%25252Fassets%25252Fpublic%25252Farticle-ogp-background-afbab5eb44e0b055cce1258705637a91.png%253Fixlib%253Drb-4.0.0%2526w%253D1200%2526blend64%253DaHR0cHM6Ly9xaWl0YS11c2VyLXByb2ZpbGUtaW1hZ2VzLmltZ2l4Lm5ldC9odHRwcyUzQSUyRiUyRmF2YXRhcnMuZ2l0aHVidXNlcmNvbnRlbnQuY29tJTJGdSUyRjUxOTYyMjYlM0Z2JTNEMz9peGxpYj1yYi00LjAuMCZhcj0xJTNBMSZmaXQ9Y3JvcCZtYXNrPWVsbGlwc2UmZm09cG5nMzImcz04NjNlMDBkNjE4ZTZmODE2YTkxMTk3YTBkNWY1Yjg2NA%2526blend-x%253D120%2526blend-y%253D467%2526blend-w%253D82%2526blend-h%253D82%2526blend-mode%253Dnormal%2526s%253D75d9bfa58f5586a61ba76e295772393b%3Fixlib%3Drb-4.0.0%26w%3D1200%26fm%3Djpg%26mark64%3DaHR0cHM6Ly9xaWl0YS11c2VyLWNvbnRlbnRzLmltZ2l4Lm5ldC9-dGV4dD9peGxpYj1yYi00LjAuMCZ3PTk2MCZoPTMyNCZ0eHQ9JUUzJTgxJUFBJUUzJTgxJTlDJUUzJTgzJThCJUUzJTgzJUE1JUUzJTgzJUJDJUUzJTgzJUE5JUUzJTgzJUFCJUUzJTgzJThEJUUzJTgzJTgzJUUzJTgzJTg4JUUzJTgxJUFGU1ZNJUUzJTgxJUFCJUU1JThCJTlEJUUzJTgxJUE2JUUzJTgxJUFBJUUzJTgxJTg0JUUzJTgxJUFFJUUzJTgxJThCJnR4dC1hbGlnbj1sZWZ0JTJDdG9wJnR4dC1jb2xvcj0lMjMxRTIxMjEmdHh0LWZvbnQ9SGlyYWdpbm8lMjBTYW5zJTIwVzYmdHh0LXNpemU9NTYmdHh0LXBhZD0wJnM9YTA2NTlhYjU0M2UxODlhZDEwNzJhYmIzNGZiNzNjZTM%26mark-x%3D120%26mark-y%3D112%26blend64%3DaHR0cHM6Ly9xaWl0YS11c2VyLWNvbnRlbnRzLmltZ2l4Lm5ldC9-dGV4dD9peGxpYj1yYi00LjAuMCZ3PTgzOCZoPTU4JnR4dD0lNDBrb3JleW91JnR4dC1jb2xvcj0lMjMxRTIxMjEmdHh0LWZvbnQ9SGlyYWdpbm8lMjBTYW5zJTIwVzYmdHh0LXNpemU9MzYmdHh0LXBhZD0wJnM9YWRiYjJhOTJkOTdkOGMyYjdhYTE1ZTE5YzcyMmExYWY%26blend-x%3D242%26blend-y%3D480%26blend-w%3D838%26blend-h%3D46%26blend-fit%3Dcrop%26blend-crop%3Dleft%252Cbottom%26blend-mode%3Dnormal%26s%3Dbef3ef0d4def2087841c2c0c04c42da8)