Prompt Engineering Guide プロンプトエンジニアリングは、言語モデル(LMs)を効率的に使用するためのプロンプトを開発および最適化する比較的新しい学問分野です。プロンプトエンジニアリングのスキルを身につけることで、大規模言語モデル(LLMs)の能力と限界をより理解することができます。 研究者は、プロンプトエンジニアリングを使用して、質問応答や算術推論などの一般的なおよび複雑なタスクのLLMsの能力を向上させます。開発者は、LLMsやその他のツールとのインタフェースとなる強固で効果的なプロンプテクニックを設計するためにプロンプトエンジニアリングを使用します。 プロンプトエンジニアリングは、プロンプトの設計と開発に限らず、LLMsとのインタラクションおよび開発に役立つ幅広いスキルと技術を含みます。これは、LLMsとインタフェースすること、ビルドすること、能力を理解すること
AIによる自動応答を提供するチャットサービスは、ビジネスやカスタマーサポートにおいてますます重要な役割を果たしています。そして、最近話題のChatGPTは、OpenAIが開発した大規模言語モデルの一つで、ビジネスへの活用も進んでいるところです。 しかし、ChatGPT以外にも類似したAIチャットサービスはあります。それぞれのサービスには特徴があり、用途に合わせて選ぶことが重要です。 そこで今回はChatGPTを含む、おすすめ対話型AIチャットサービス8つの特徴を解説します。AIチャットサービスに興味のある方は、ぜひ最後までご一読ください。 ※記事に記載している情報は2024年7月時点の調査に基づくものです。各サービス内容が変更になることがありますのでご了承ください。 <対話型 生成AIチャットサービス比較表>
カメラ好き機械学習エンジニアの@yktm31です。 先日、OpenAIから、公式のプラグインとして「Code Interpreter」が発表されました。 「Code Interpreter」は、ChatGPT上でPythonのコードを生成・実行する仕組みを持っています。 これまでも、ChatGPTで、プログラムのソースコードを出力することは可能でしたが、実行まではできませんでした。 「Code Interpreter」は、ChatGPTの有料版で利用することが可能ですが、ユーザーが自然言語で指示や要求を出すだけで、 ChatGPTがその内容を理解し、ソースコードの生成から実行まで行えたり、既存のコードを解釈してその動作を説明したりすることが可能になります。 openai.com 本記事では、この「Code Interpreter」を利用して、CSVファイルを元に、データの可視化を行ってみま
※本記事はOracleの下記Meetup「Oracle Big Data Jam Session」で実施予定の内容です。 ※セミナー実施済の動画に関しては以下をご参照ください。 本記事の対象者 これから機械学習を利用した開発をしていきたい方 機械学習のトレンド技術を知りたい方 なるべく初歩的な内容から学習したい方 はじめに Transformerの登場以降、著しい技術革新が続くここ数年、特にOpenAI社のChatGPTのサービス開始以降、おびただしい数の技術ブログや記事がインターネット上に存在する中、本記事に目を留めていただいてありがとうございます。 この勉強会では、専門用語や難解な公式を極力排除し、初学者の方々を対象に、「そもそも自然言語の機械学習ってどういうもの?」、「言語モデルって要するに何?」というところからGPTをざっくり理解することを目的としています。従って、本記事に記載のあ
3月2日にChatGPTのAPIが公開されて企業だけでなく、個人による開発も積極的に行われています。ChatGPTの個人開発を行うにはGoogle Apps Script(GAS)がおすすめです。その理由を解説します。 本記事は、TechFeed Experts Night#16 〜 ChatGPT, GitHub Copilot…AIはエンジニアの仕事をどう変える?AI×開発最前線!のセッション書き起こし記事になります。 イベントページのタイムテーブルから、その他のセッションに関する記事もお読み頂けますので、一度アクセスしてみてください。 本セッションの登壇者 セッション動画 それでは、「ChatGPTの個人開発ではGoogle App Scriptがおすすめな理由」というタイトルで発表させていただきます。 今回お話しする内容はこちらになります。まず少しご紹介させていただいて、ChatG
「ChatGraph」はChatGPTのノードエディターで、ノードを組み合わせることで複雑なシステムを視覚的に構築できます。ChatGPTの高い性能を有意義に使えそうだったので、実際に使ってみました。 【ChatGPTのノードエディタ】ChatGraph - β - uynet - BOOTH https://booth.pm/ja/items/4728147 まずは、上記のリンクからChatGraphの配布ページにアクセスして「無料ダウンロード」をクリックします。今回は無料版を選択しましたが、ChatGraphには画像生成機能が付いたお布施版も存在しています。 ZIPファイルをダウンロードしたら、Windows標準機能や対応ソフトで解凍します。 ZIPファイルを解凍するとChatGraphの実行ファイル「graph.exe」が現れるのでダブルクリックして起動します。 ChatGraphの
今回のコラムでは、最近noteで公開されたChatGPTのハック術を紹介しています。特に話題になっている記事を10個ピックアップしました。 ChatGPTの基本的な使い方から仕事で使える活用方法まで理解できる内容です。 この記事を読めば、ChatGPTの多様な使い方がわかり、仕事や日常生活における活用のビジョンが明確になります。 最後まで読んだ方は、ChatGPTの機能を最大限使えるようになり、仕事の効率を大幅に向上させる方法を理解できるでしょう。 【極意】効果的なChatGPTの3つの活用方法! 当記事ではChatGPTの効果的な使い方を詳しく紹介していきます。特にAIをまだ十分に活用できていない方には、参考になるはずです。 この記事で紹介するのは、ChatGPTの基本的な使い方3つとその具体例、そしてテクニックです。 明確な指示の出し方やキーワードの利用、プロンプトの長さなど、Chat
めちゃくちゃ分かりやすい機械学習の講義で有名なAndrew NgさんとOpenAIのIsa Fulfordさんが無料で提供しているChatGPT Prompt Engineering for Developersというコンテンツが面白かったので、内容をまとめてみました。 (注)大規模言語モデル(LLM)を利用したアプリケーションを開発する開発者向けのコンテンツなので、ChatGPTのUIで扱うようなゴールシークプロンプトといったようなプロンプトテクニックを扱うものではないことをご承知置きください。 最も重要なポイント自身の開発するアプリケーションに適したプロンプトを開発するためのプロセスを持つこと。 インターネット上にあるような「完璧なプロンプト30選」のようなコンテンツをアテにして、1回で成功させようなんて思わないこと。もし1回目でうまくいかなくても、例えば指示が十分に明確でなかった、あ
今や毎日耳にするChatGPTだけれど、そもそもどんな風に話題になってきたのかをこのGWを利用して振り返りたいって人もいるはず。そんな人のためにChatGPT関連ニュースをまとめておきましたので、ぜひご利用ください! 良い振り返りで、良い人生を。 このタイトルだけでもChatGPTに食わせて、話題の流れをまとめてもらうのが一番かも? 週刊東洋経済 2023/4/22号(ChatGPT 仕事術革命) 作者:週刊東洋経済編集部東洋経済新報社Amazon 2020/06/01 あまりに高精度のテキストを作り出してしまうため「危険すぎる」と問題視された文章生成言語モデルの最新版「GPT-3」が公開 - GIGAZINE 2020/07/21 GPT-3の衝撃 - ディープラーニングブログ 2020/07/22 「GPT-3」は思ってたより「やばい」ものだった。話し言葉でプログラミングまでこなすAI
コンテンツブロックが有効であることを検知しました。 このサイトを利用するには、コンテンツブロック機能(広告ブロック機能を持つ拡張機能等)を無効にしてページを再読み込みしてください。 ✕
ChatGPTをすでに使用している人は多いと思います。また、使用していなくても興味があり、これから使用してみようという人もいるでしょう。 ChatGPTはその仕組みが分からなくても使用できますが、どのように機能しているのか分かると今よりさらに使いこなせるようになるかもしれません。 How ChatGPT works: a deep dive by Dan Holick 下記は各ポイントを意訳したものです。 ※当ブログでの翻訳記事は、元サイト様にライセンスを得て翻訳しています。 ChatGPTがどのように機能しているか 終わりに ChatGPTがどのように機能しているか ChatGPTなどの大規模言語モデル(Large Language Model、以下LLM)は、どのように機能していると思いますか? それらは驚くほどシンプルであると同時に非常に複雑なものです。 心の準備はいいですか? では
先日、データ解析のセミナーを開催しました。 未経験の方でも、2時間で予測モデルを作成することができるハンズオンセミナーでした。 好評だったので、その内容をYouTubeにまとめたのでご興味ある方はご覧ください。 このハンズオンセミナーで予測モデルの作り方を知った友人がchatGPTにアドバイスをもらって、データサイエンスのコンペティションサイトに応募したところ、上位6.5%に入ることができたという報告を受け、驚愕しました。 chatGPTを上手く使えば素人がプロに勝つことも十分できるのだなと実感しました。 友人が参加したデータサイエンスのコンペは、SIGNATEの糖尿病予測問題でした。 以下のような進め方をしたとのことでした。 まず、問題の概要を説明して、どのように進めていけば良いかを確認したそうです。 そうすると、chatGPTからデータサイエンスの問題を解くための手順を一覧化してくれて
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く