タグ

数学とWikipediaに関するtyosuke2011のブックマーク (25)

  • Wikipedia (JP) - フーリエ変換(Fourier transform)

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "フーリエ変換" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2013年2月) 上は時間領域で表現された矩形関数f(t)(左)と、周波数領域で表現されたそのフーリエ変換f̂(ω)(右)。f̂(ω)はSinc関数である。下は時間遅れのある矩形関数 g(t) と、そのフーリエ変換 ĝ(ω)。 時間領域における平行移動 (ディレイ)は、周波数領域では虚数部の位相シフトとして表現される。 数学においてフーリエ変換(フーリエへんかん、英: Fourier transform、FT)は、実変数の複素または実数値関数を、別の同種の関数fに写す変換で

    Wikipedia (JP) - フーリエ変換(Fourier transform)
  • ユークリッド幾何学 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Euclidean geometry|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針について

  • ブラウン運動 - Wikipedia

    2次元でのブラウン運動の1000ステップ分のシミュレーションの例。運動の起点は (0, 0) である。各ステップの x 成分と y 成分は独立で、分散は2で平均は0の正規分布に従う。数学的なモデルでは、ステップは不連続ではないと仮定している。 ブラウン運動のシミュレーション。黒色の媒質粒子の衝突により、黄色の微粒子が不規則に運動している。 ブラウン運動(ブラウンうんどう、英: Brownian motion)とは、液体や気体中に浮遊する微粒子(例:コロイド)が、不規則(ランダム)に運動する現象である。1827年[注 1]、ロバート・ブラウンが、水の浸透圧で破裂した花粉から水中に流出し浮遊した微粒子を、顕微鏡下で観察中に発見し[2]、論文「植物の花粉に含まれている微粒子について」で発表した[3]。 この現象は長い間原因が不明のままであったが、1905年、アインシュタインにより、熱運動する媒質

    ブラウン運動 - Wikipedia
  • エイダ・ラブレス - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "エイダ・ラブレス" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2013年12月) 1840年ごろの肖像画、 (作)アルフレッド・エドワード・シャロン アントワーヌ・クロード(英語版)による銀板写真。1843年または1850年の写真とされる。 ラブレース伯爵夫人オーガスタ・エイダ・キング(Augusta Ada King, Countess of Lovelace, 1815年12月10日 - 1852年11月27日)は、19世紀のイギリスの貴族・数学者。主にチャールズ・バベッジの考案した初期の汎用計算機である解析機関についての著作

    エイダ・ラブレス - Wikipedia
  • 代数幾何学 - Wikipedia

    大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われが

  • 線形合同法 - Wikipedia

    線形合同法(せんけいごうどうほう、英: Linear congruential generators, LCGs)とは、擬似乱数列の生成式の一つ。 漸化式 によって与えられる。A、B、Mは定数で、M>A、M>B、A>0、B≥0である。 上の式で、が、乱数の種であり、これに数を代入すると、が得られる。さらにを生成する場合には、を使う。以後、同様に行う。 例えば、定数をそれぞれ、A=3、B=5、M=13、乱数の種=8とすると、(上の式においてはXn+1を左辺に置いたが、今回は便宜上、右辺に置く) 次に乱数を生成する際は前回生成された乱数(今回は3)を使って、 以下、同じように、 となる。 生成される乱数列は周期性を持ち、上の例では8→3→1→8→3→……、を繰り返す。この周期は最大でMであり、以下の条件が満たされたときに最大周期Mをもつ。 BとMが互いに素である。 A-1が、Mの持つ全ての素因

  • 円周率 - Wikipedia

    円周率(えんしゅうりつ、英: Pi、独: Kreiszahl、中: 圓周率)とは、円の直径に対する円周の長さの比率のことをいい[1]、数学定数の一つである。通常、円周率はギリシア文字である π[注 1]で表される。円の直径から円周の長さや円の面積を求めるときに用いる[1]。また、数学をはじめ、物理学、工学といった科学の様々な理論の計算式にも出現し、最も重要な数学定数とも言われる[5]。 円周率は無理数であり、その小数展開は循環しない。さらに、円周率は無理数であるのみならず、超越数でもある。 円周率の計算において功績のあったルドルフ・ファン・クーレンに因み、ルドルフ数とも呼ばれる。ルドルフは小数点以下35桁まで計算した[6]。小数点以下35桁までの値は次の通りである。 ギリシャ文字の π は円周率に代表される。 円周率を表すギリシア文字 π は、ギリシア語でいずれも周辺・円周・周を意味する

    円周率 - Wikipedia
  • トポロジカルソート - Wikipedia

    トポロジカルソート(英: topological sort)は、グラフ理論において、有向非巡回グラフ(英: directed acyclic graph, DAG)の各ノードを順序付けして、どのノードもその出力辺の先のノードより前にくるように並べることである。有向非巡回グラフは必ずトポロジカルソートすることができる。 有向非巡回グラフのノードの集合に到達可能性関係 R (ノード x から y への(各辺の向きに逆行しない)経路が存在するとき、またそのときに限り xRy とする)を定めると、R は半順序関係となる。トポロジカルソートとは、この R を全順序になるように拡張したものとみなせる。 トポロジカルソートの典型的な利用例はジョブのスケジューリングである。トポロジカルソートのアルゴリズムはPERTというプロジェクト管理手法[1]のスケジューリングのために1960年代初頭に研究が開始された

    トポロジカルソート - Wikipedia
  • 写像 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "写像" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2021年4月) この項目は内容が専門的であり、一般の閲覧者にはわかりにくくなっているおそれがあります。 専門用語をわかりやすい表現にするための修正をして下さる協力者を求めています。(2021年4月) 写像(しゃぞう、英: mapping, map)は、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。関数、変換、作用素、射などが写像の同義語として用いられる[1][2]こともある。 ブルバキに見られるように、写像は

    写像 - Wikipedia
  • フェルミ推定 - Wikipedia

    フェルミ推定(フェルミすいてい、英: Fermi estimate)とは、実際に調査することが難しいような捉えどころのない量を、いくつかの手掛かりを元に論理的に推論し、短時間で概算することである。例えば「東京都内にあるマンホールの総数はいくらか?」「地球上に蟻は何匹いるか?」など、一見見当もつかないような量に関して推定すること、またはこの種の問題を指す。 別称でフェルミの問題(フェルミのもんだい、英: Fermi problem/question/quiz)、オーダーエスティメーションや封筒裏の計算(英語版)[1]ともいわれる。 名前の由来は物理学者でノーベル物理学賞を受賞したエンリコ・フェルミに由来する[2]。フェルミはこの種の概算を得意としていた。 フェルミ推定はコンサルティング会社や外資系企業などの面接試験で用いられることがあるほか、欧米では学校教育で科学的な思考力を養成するために用

  • ABC予想 - Wikipedia

    ABC予想(エービーシーよそう、英語: abc conjecture)は、1985年にジョゼフ・オステルレとデイヴィッド・マッサーにより提起された数論の予想である。オステルレ=マッサー予想(英語: Oesterlé–Masser conjecture)とも呼ばれる[1][2]。 これは多項式に関するメーソン・ストーサーズの定理の整数における類似であり、互いに素でありかつ a + b = c を満たすような3つの自然数(この予想に呼び方を合わせると)a, b, c の和と積の関係について述べている[3][4]。 ABC予想は、この予想から数々の興味深い結果が得られることから有名になった。数論における数多の有名な予想や定理がABC予想から直ちに導かれる。 ドリアン・モリス・ゴールドフェルド(英語版)は、ABC予想を「ディオファントス解析で最も重要な未解決問題」であるとしている[5]。 自然数

  • ツェラーの公式 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ツェラーの公式" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2018年10月) ツェラーの公式(ツェラーのこうしき、英: Zeller's congruence)とは西暦(グレゴリオ暦またはユリウス暦)の年・月・日から、その日が何曜日であるかを算出する公式である。クリスティアン・ツェラー (Christian Zeller) が考案した[1]。ユリウス通日を求め、そこから曜日を求める計算と質は同じである。 年 月 日の曜日を求める。 ただし、1月と2月は、前年のそれぞれ13月・14月として扱う。たとえば、2024年1月1日・2月

  • シュリニヴァーサ・ラマヌジャン - Wikipedia

    シュリニヴァーサ・ラマヌジャン(Srinivasa Ramanujan [ˈsriːnɪvɑːsə rɑːˈmɑːnʊdʒən];[1] 出生名:Srinivasa Ramanujan Aiyangar IPA: [sriːniʋaːsa ɾaːmaːnud͡ʑan ajːaŋgar], タミル語: சீனிவாச இராமானுஜன் [sriːniˈʋaːsə raːˈmaːnudʒən] ( 音声ファイル)、1887年12月22日 - 1920年4月26日)[2]は、インドの数学者。純粋数学の正式な教育をほとんど受けていないが、極めて直感的かつ天才的な閃きにより、数学的解析、整数論、無限級数、連分数などのほか、当時解決不可能とされていた数学的問題の解決にも貢献し、「インドの魔術師」の異名を取った[3]。 クンバコナムのサランガパニー通りにあるラマヌジャンの生家。 1887年、南インド

    シュリニヴァーサ・ラマヌジャン - Wikipedia
  • カール・フリードリヒ・ガウス - Wikipedia

    Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス([ɡaʊs]; ドイツ語: Johann Carl Friedrich Gauß listenⓘ、ラテン語: Carolus Fridericus Gauss、1777年4月30日 - 1855年2月23日)は、ドイツ数学者・天文学者・物理学者。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する(→ガウスにちなんで名づけられたものの一覧)。19世紀最大の数学者の一人であり[1]、アルキメデス、ニュートンと並んで最も偉大な数学者の一人に称されている[2][3]。 1777年 - ブラウンシュヴァイクに生まれる。 1792年 - 素数定理の成立を予想。 17

    カール・フリードリヒ・ガウス - Wikipedia
  • レオンハルト・オイラー - Wikipedia

    レオンハルト・オイラー(Leonhard Euler、1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)である。 当時の数学界の中心的人物となり、19世紀へと続く厳密化・抽象化時代の礎を築いた[1]。右目を失明していたことから「数学のサイクロプス(単眼の巨人)」とも呼ばれた[2][3]。さらに後には、数学の研究に没頭し過ぎたあまり左目も失明したが、その後も亡くなるまで研究をやめることはなかった(後述)。 1707年、スイスのバーゼルに生まれる。オイラーの父も数学教育を受けた人物であったが、オイラーには自分の後を継いで牧師になることを望んでいた[1]。1720年にはバーゼル大学に入学し哲学を学んだが、ここで数学者ヨハン・ベルヌーイに出会って数学の才能を見出された。1724年には神学の道へと一旦進んだものの、オイラー自身は数学に強い興味を抱いており

    レオンハルト・オイラー - Wikipedia
  • ユークリッドの互除法 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Euclidean algorithm|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針につい

    ユークリッドの互除法 - Wikipedia
  • 有限幾何学 - Wikipedia

    次の注意は有限「平面」のみに適応できる。 有限平面幾何にはアフィン平面幾何と射影平面幾何の二種類がある。アフィン幾何においては平行線は通常の意味で使われる。これに対し、射影幾何においては任意の二つの直線がただひとつの交点をもつ、すなわち平行線は存在しない。有限アフィン平面幾何と有限射影平面幾何は、どちらも簡単な公理系によって構成される。 アフィン平面幾何は、空でない集合(その要素は「点」と呼ばれる)、および、次の条件を満たすようなの部分集合の空でない族(その要素は「直線」と呼ばれる)から構成される。 2つの異なる任意の点が与えられたとき、それらを含むような直線がただ一つだけ存在する。 平行線公準 :直線と上にない一点が与えられたとき、を含みとは交点をもたない、すなわちとなるような直線がただ一つだけ存在する。 どの3点も同一直線にないような4点集合が存在する。 最後の公理は、この幾何が空集合

  • ユークリッド空間 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ユークリッド空間" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2017年6月) この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。 脚注を導入して、記事の信頼性向上にご協力ください。(2023年9月) 三次元ユークリッド空間の各点は三つの成分の座標で決定される。 ユークリッド空間(ユークリッドくうかん、英: Euclidean space)とは、数学における概念の1つで、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびそ

    ユークリッド空間 - Wikipedia
  • マルコフ連鎖 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "マルコフ連鎖" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2018年1月) マルコフ連鎖(マルコフれんさ、英: Markov chain)とは、確率過程の一種であるマルコフ過程のうち、とりうる状態が離散的(有限または可算)なもの(離散状態マルコフ過程)をいう。また特に、時間が離散的なもの(時刻は添え字で表される)を指すことが多い[注釈 1]。マルコフ連鎖は、未来の挙動が現在の値だけで決定され、過去の挙動と無関係である(マルコフ性)。各時刻において起こる状態変化(遷移または推移)に関して、マルコフ連鎖は遷移確率が過去の状態によらず、

  • MATLAB - Wikipedia

    MATLAB(マットラブまたはマトラボ[24])は、アメリカ合衆国のMathWorks社が開発している数値解析ソフトウェアであり、その中で使うプログラミング言語の名称でもある。MATLABは、数値線形代数、関数とデータの可視化、アルゴリズム開発、グラフィカルインターフェイスや、他言語(C言語/C++/Java/Python)とのインターフェイスの機能を有している。MATLABは、主に、数値計算を扱う事ができるが、追加のオプションSymbolic Math Toolboxを使うことで、数式処理の能力を得ることができる。2019年時点でMATLABのユーザー数は400万人を超えており、100,000 以上の企業・政府・大学で、工学・理学・経済学など幅広い分野に利用されている。 MATLABは、MATrix LABoratoryを略したものであり[25]、行列計算、ベクトル演算、グラフ化や3次元

    MATLAB - Wikipedia