タグ

Wikipediaと数学に関するtyosuke2011のブックマーク (24)

  • ユークリッド幾何学 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ユークリッド幾何学" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2011年12月) ユークリッド幾何学(ユークリッドきかがく、英: Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系・哲学者であるエウクレイデス(ユークリッド)の著書『原論』に由来する。 概要[編集] 古代エジプトや古代ギリシャなどでは盛んに幾何学が研究されていた。 エウクレイデスはその成果を『原論』の1~4巻において体系化した。その手法は以下の通りである。 まず、点や線などの基礎的な概念に対する定義を与える。 次に、一連の公理を

  • ブラウン運動 - Wikipedia

    2次元でのブラウン運動の1000ステップ分のシミュレーションの例。運動の起点は (0, 0) である。各ステップの x 成分と y 成分は独立で、分散は2で平均は0の正規分布に従う。数学的なモデルでは、ステップは不連続ではないと仮定している。 ブラウン運動のシミュレーション。黒色の媒質粒子の衝突により、黄色の微粒子が不規則に運動している。 ブラウン運動(ブラウンうんどう、英: Brownian motion)とは、液体や気体中に浮遊する微粒子(例:コロイド)が、不規則(ランダム)に運動する現象である。1827年[注 1]、ロバート・ブラウンが、水の浸透圧で破裂した花粉から水中に流出し浮遊した微粒子を、顕微鏡下で観察中に発見し[2]、論文「植物の花粉に含まれている微粒子について」で発表した[3]。 この現象は長い間原因が不明のままであったが、1905年、アインシュタインにより、熱運動する媒質

    ブラウン運動 - Wikipedia
  • エイダ・ラブレス - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "エイダ・ラブレス" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2013年12月) 1840年ごろの肖像画、 (作)アルフレッド・エドワード・シャロン アントワーヌ・クロード(英語版)による銀板写真。1843年または1850年の写真とされる。 ラブレース伯爵夫人オーガスタ・エイダ・キング(Augusta Ada King, Countess of Lovelace, 1815年12月10日 - 1852年11月27日)は、19世紀のイギリスの貴族・数学者。主にチャールズ・バベッジの考案した初期の汎用計算機である解析機関についての著作で、

    エイダ・ラブレス - Wikipedia
  • 代数幾何学 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "代数幾何学" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2011年12月) 代数幾何学(だいすうきかがく、英: algebraic geometry)とは、多項式の零点(zero)のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である[1]。 概論[編集] 大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルト

  • 線形合同法 - Wikipedia

    線形合同法(せんけいごうどうほう、英: Linear congruential generators, LCGs)とは、擬似乱数列の生成式の一つ。 漸化式 によって与えられる。A、B、Mは定数で、M>A、M>B、A>0、B≥0である。 生成[編集] 上の式で、が、乱数の種であり、これに数を代入すると、が得られる。さらにを生成する場合には、を使う。以後、同様に行う。 例えば、定数をそれぞれ、A=3、B=5、M=13、乱数の種=8とすると、(上の式においてはXn+1を左辺に置いたが、今回は便宜上、右辺に置く) 次に乱数を生成する際は前回生成された乱数(今回は3)を使って、 以下、同じように、 となる。 周期性[編集] 生成される乱数列は周期性を持ち、上の例では8→3→1→8→3→……、を繰り返す。この周期は最大でMであり、以下の条件が満たされたときに最大周期Mをもつ。 BとMが互いに素である。

  • 円周率 - Wikipedia

    円周率(えんしゅうりつ、英: Pi、独: Kreiszahl、中: 圓周率)とは、円の直径に対する円周の長さの比率のことをいい[1]、数学定数の一つである。通常、円周率はギリシア文字である π[注 1]で表される。円の直径から円周の長さや円の面積を求めるときに用いる[1]。また、数学をはじめ、物理学、工学といった科学の様々な理論の計算式にも出現し、最も重要な数学定数とも言われる[5]。 円周率は無理数であり、その小数展開は循環しない。さらに、円周率は無理数であるのみならず、超越数でもある。 円周率の計算において功績のあったルドルフ・ファン・クーレンに因み、ルドルフ数とも呼ばれる。ルドルフは小数点以下35桁まで計算した[6]。小数点以下35桁までの値は次の通りである。 ギリシャ文字の π は円周率に代表される。 基礎[編集] 表記と呼び方[編集] 円周率を表すギリシア文字 π は、ギリシア語

    円周率 - Wikipedia
  • トポロジカルソート - Wikipedia

    トポロジカルソート(英: topological sort)は、グラフ理論において、有向非巡回グラフ(英: directed acyclic graph, DAG)の各ノードを順序付けして、どのノードもその出力辺の先のノードより前にくるように並べることである。有向非巡回グラフは必ずトポロジカルソートすることができる。 有向非巡回グラフのノードの集合に到達可能性関係 R (ノード x から y への(各辺の向きに逆行しない)経路が存在するとき、またそのときに限り xRy とする)を定めると、R は半順序関係となる。トポロジカルソートとは、この R を全順序になるように拡張したものとみなせる。 例[編集] トポロジカルソートの典型的な利用例はジョブのスケジューリングである。トポロジカルソートのアルゴリズムはPERTというプロジェクト管理手法[1]のスケジューリングのために1960年代初頭に研究

    トポロジカルソート - Wikipedia
  • 写像 - Wikipedia

    集合論においては、集合 A, B の元の順序対からなる集合(すなわち二項関係)f が x ∈ A ならば (x, y) ∈ f を満たす y ∈ B が存在する (x, y1) ∈ f かつ (x, y2) ∈ f ならば y1 = y2 の二つをみたすとき、f を A から B への関数と呼び[7]、f: A → B で表す。またこのとき、(x, y) ∈ f であることを f(x) = y と書く。この文脈では、f と f のグラフ {(x, y) | y = f(x)} を同一視し、関数と写像を同じ意味に用いる。 二つの写像 f と g の相等は、集合として同一であるということ、すなわち ∀x∀y ( (x,y) ∈ f ⇔ (x,y) ∈ g ) ということであるが、これは( f と g の定義域が等しく、かつ)任意の a ∈ A に対して f(a) = g(a) であることと同値

    写像 - Wikipedia
  • フェルミ推定 - Wikipedia

    フェルミ推定(フェルミすいてい、英: Fermi estimate)とは、実際に調査することが難しいような捉えどころのない量を、いくつかの手掛かりを元に論理的に推論し、短時間で概算することである。例えば「東京都内にあるマンホールの総数はいくらか?」「地球上に蟻は何匹いるか?」など、一見見当もつかないような量に関して推定すること、またはこの種の問題を指す。 別称でフェルミの問題(フェルミのもんだい、英: Fermi problem/question/quiz)、オーダーエスティメーションや封筒裏の計算(英語版)[1]ともいわれる。 名前の由来は物理学者でノーベル物理学賞を受賞したエンリコ・フェルミに由来する[2]。フェルミはこの種の概算を得意としていた。 フェルミ推定はコンサルティング会社や外資系企業などの面接試験で用いられることがあるほか、欧米では学校教育で科学的な思考力を養成するために用

  • ABC予想 - Wikipedia

    を満たす、互いに素な自然数の組 (a, b, c) に対し、積 abc の互いに異なる素因数の積を d と表す。このとき、任意の ε > 0 に対して、 ABC予想(エービーシーよそう、英語: abc conjecture)は、1985年にジョゼフ・オステルレとデイヴィッド・マッサーにより提起された数論の予想である。オステルレ=マッサー予想(英語: Oesterlé–Masser conjecture)とも呼ばれる[1][2]。 これは多項式に関するメーソン・ストーサーズの定理の整数における類似であり、互いに素でありかつ a + b = c を満たすような3つの自然数(この予想に呼び方を合わせると)a, b, c の和と積の関係について述べている[3][4]。 ABC予想は、この予想から数々の興味深い結果が得られることから有名になった。数論における数多の有名な予想や定理がABC予想から直ち

  • ツェラーの公式 - Wikipedia

    ※3月1日 ~ ( m - 1 )月末日迄の日数と、[ 306 ( m + 1 ) / 10 ] - 122 の値は完全に一致している。 従って、1年1月1日 ~ y 年 m 月 d 日の日数は、上記全てを合算した、 31 + 28 + 365 ( y - 1 ) + [ y / 4 ] - [ y / 100 ] + [ y / 400 ] + [ 306 ( m + 1 ) / 10 ] - 122 + d ・・・  【※】/ Fairfield の公式 となる。 曜日は7日間で循環しているので、上記【※】式の 7 の剰余を求めることで、曜日が判明する。即ち、 ・・・  【I】 である。 このとき、h のとり得る値は 0, 1, 2, 3, 4, 5, 6 で、順に日曜日、月曜日、火曜日、水曜日、木曜日、金曜日、土曜日を表す (現行のグレゴリオ暦は、1582年10月15日に、この日を金

  • シュリニヴァーサ・ラマヌジャン - Wikipedia

    シュリニヴァーサ・ラマヌジャン(Srinivasa Ramanujan [ˈsriːnɪvɑːsə rɑːˈmɑːnʊdʒən];[1] 出生名:Srinivasa Ramanujan Aiyangar IPA: [sriːniʋaːsa ɾaːmaːnud͡ʑan ajːaŋgar], タミル語: சீனிவாச இராமானுஜன் [sriːniˈʋaːsə raːˈmaːnudʒən] ( 音声ファイル)、1887年12月22日 - 1920年4月26日)[2]は、インドの数学者。純粋数学の正式な教育をほとんど受けていないが、極めて直感的かつ天才的な閃きにより、数学的解析、整数論、無限級数、連分数などのほか、当時解決不可能とされていた数学的問題の解決にも貢献し、「インドの魔術師」の異名を取った[3]。 生涯[編集] クンバコナムのサランガパニー通りにあるラマヌジャンの生家。 188

    シュリニヴァーサ・ラマヌジャン - Wikipedia
  • カール・フリードリヒ・ガウス - Wikipedia

    Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス([ɡaʊs]; ドイツ語: Johann Carl Friedrich Gauß  listen[ヘルプ/ファイル]、ラテン語: Carolus Fridericus Gauss、1777年4月30日 - 1855年2月23日)は、ドイツ数学者・天文学者・物理学者。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する(→ガウスにちなんで名づけられたものの一覧)。19世紀最大の数学者の一人であり[1]、18世紀のオイラーと並んで数学界の二大巨人の一人と呼ばれることもある[2]。 略歴と業績[編集] 1777年 - ブラウンシュヴァイクに生まれる。 1792年

    カール・フリードリヒ・ガウス - Wikipedia
  • レオンハルト・オイラー - Wikipedia

    レオンハルト・オイラー(Leonhard Euler、1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)である。 当時の数学界の中心的人物となり、19世紀へと続く厳密化・抽象化時代の礎を築いた[1]。数学者としての膨大な業績と、後世の数学界に与えた影響力の大きさから、19世紀のガウスと共に数学界の二大巨人の一人と呼ばれている[2]。 右目を失明していたことから「数学のサイクロプス(単眼の巨人)」とも呼ばれた[3][4]。さらに後には、数学の研究に没頭し過ぎたあまり左目も失明したが、その後も亡くなるまで研究をやめることはなかった(後述)。 概要・生涯[編集] 1707年、スイスのバーゼルに生まれる。オイラーの父も数学教育を受けた人物であったが、オイラーには自分の後を継いで牧師になることを望んでいた[1]。1720年にはバーゼル大学に入学し哲学を学

    レオンハルト・オイラー - Wikipedia
  • ユークリッドの互除法 - Wikipedia

    252と105のためのユークリッドの互除法のアニメーション。 クロスバーは、最大公約数(GCD)である21の倍数を表す。 それぞれのステップにおいて、1つの番号がゼロになるまで、より少ない数はより大きな数から引かれる。 残りの数は、GCD。 ユークリッドの互除法(ユークリッドのごじょほう、英: Euclidean Algorithm)は、2 つの自然数の最大公約数を求める手法の一つである。 2 つの自然数 a, b (a ≧ b) について、a の b による剰余を r とすると、 a と b との最大公約数は b と r との最大公約数に等しいという性質が成り立つ。この性質を利用して、 b を r で割った剰余、 除数 r をその剰余で割った剰余、と剰余を求める計算を逐次繰り返すと、剰余が 0 になった時の除数が a と b との最大公約数となる。 明示的に記述された最古のアルゴリズムと

    ユークリッドの互除法 - Wikipedia
  • 有限幾何学 - Wikipedia

    有限幾何学(ゆうげんきかがく)とは有限個の点から構成される幾何学の体系である。例えばユークリッド幾何学は有限幾何学でない。ユークリッド空間における「線」は無限に多くの(実際は実数と同じ濃度の)「点」を含むからである。 ユークリッド幾何は任意の次元で存在することと同様に、有限幾何も任意の(有限)次元で存在する。ただし、ユークリッド幾何とは異なり、有限幾何の場合は同じ次元でも各種の異なった(幾何学的)構造が存在し得る。 概要[編集] 有限幾何は有限体上の構造と関連したベクトル空間として、線型代数を通じて定義できる。それはガロア幾何とも呼ばれる。または有限幾何は、純粋に組合せ論的に定義することもできる。 多くの場合には(しかしすべてではない)有限幾何はガロア幾何と同じものである。例えば3次元またはそれ以上の次元における任意の有限射影空間は、ある有限体上の射影空間と同型である(有限体上のベクトル空

  • ユークリッド空間 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ユークリッド空間" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年6月) この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。脚注を導入して、記事の信頼性向上にご協力ください。(2023年9月) 三次元ユークリッド空間の各点は三つの成分の座標で決定される。 ユークリッド空間(ユークリッドくうかん、英: Euclidean space)とは、数学における概念の1つで、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次

    ユークリッド空間 - Wikipedia
  • マルコフ連鎖 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "マルコフ連鎖" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2018年1月) マルコフ連鎖(マルコフれんさ、英: Markov chain)とは、確率過程の一種であるマルコフ過程のうち、とりうる状態が離散的(有限または可算)なもの(離散状態マルコフ過程)をいう。また特に、時間が離散的なもの(時刻は添え字で表される)を指すことが多い[注釈 1]。マルコフ連鎖は、未来の挙動が現在の値だけで決定され、過去の挙動と無関係である(マルコフ性)。各時刻において起こる状態変化(遷移または推移)に関して、マルコフ連鎖は遷移確率が過去の状態によらず、現在

  • MATLAB - Wikipedia

    MATLAB(マットラブまたはマトラボ[24])は、アメリカ合衆国のMathWorks社が開発している数値解析ソフトウェアであり、その中で使うプログラミング言語の名称でもある。MATLABは、数値線形代数、関数とデータの可視化、アルゴリズム開発、グラフィカルインターフェイスや、他言語(C言語/C++/Java/Python)とのインターフェイスの機能を有している。MATLABは、主に、数値計算を扱う事ができるが、追加のオプションSymbolic Math Toolboxを使うことで、数式処理の能力を得ることができる。2019年時点でMATLABのユーザー数は400万人を超えており、100,000 以上の企業・政府・大学で、工学・理学・経済学など幅広い分野に利用されている。 MATLABは、MATrix LABoratoryを略したものであり[25]、行列計算、ベクトル演算、グラフ化や3次元

    MATLAB - Wikipedia
  • 曲線 - Wikipedia

    この項目では、数学上の曲線について説明しています。道路や鉄道路線に見られる曲線については「線形 (路線)」をご覧ください。 この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "曲線" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2023年5月) 放物線は簡単な曲線の例である 数学における曲線(きょくせん、英: curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。[注釈 1] つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる

    曲線 - Wikipedia