本書は、機械学習で繰り返し登場する課題を30のパターン(データ表現、問題表現、モデルの訓練、再現性、対応性、運用性、説明性、公平性などに関するもの)に分類し、それぞれについてベストプラクティスを提示・解説するデザインパターン集です。すぐ動かせるコード例とデータセットを豊富に含み、手を動かしながら機械学習を学びたい初心者の実践的な入門書としても、現場のデータサイエンティストやエンジニアのリファレンスとしても有用な内容となっています。著者のGoogle Cloudのデータ分析&AI部門トップとしての豊富な経験に基づく実用本位の一冊です。 正誤表 ここで紹介する正誤表には、書籍発行後に気づいた誤植や更新された情報を掲載しています。以下のリストに記載の年月は、正誤表を作成し、増刷書籍を印刷した月です。お手持ちの書籍では、すでに修正が施されている場合がありますので、書籍最終ページの奥付でお手持ちの書