タグ

machinelearningに関するyagitoshiroのブックマーク (5)

  • Machine Learning that Matters(ICML 2012) 読んだ - 糞糞糞ネット弁慶

    機械学習やってる人は皆読むべきだと思う. Machine Learning that Matters (pdf) 概要 機械学習のトップカンファレンスICMLに数式/アルゴリズム/定理を1つも書かずに通った論文. 機械学習は何のために重要なのか,現実世界との繋がりを失っていないか,あなたは「機械学習って何の役に立つの?」と聞かれた時にちゃんと答えられるのか,まだ取り組まれてない重要な問題は何か,について触れた長文ブログのような論文. contributionsは 機械学習の研究と人類と科学全体におけるもっと大きな研究との間にある欠落に対する明確な特定と解説 そのギャップに取り組むための第一歩 (どう訳していいかわからなかった) 機械学習において重要な問題の提示 機械学習のための機械学習(要約: マッシュルームやアヤメの分類器を死ぬほど作って何の役に立ったの?) ベンチマークデータの問題 こ

    Machine Learning that Matters(ICML 2012) 読んだ - 糞糞糞ネット弁慶
  • 統計的機械学習入門

    統計的機械学習入門(under construction) 機械学習歴史ppt pdf 歴史以前 人工知能の時代 実用化の時代 導入ppt pdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 次元の呪い 損失関数, bias, variance, noise データの性質 数学のおさらいppt pdf 線形代数学で役立つ公式 確率分布 情報理論の諸概念 (KL-divergenceなど) 線形回帰と識別ppt pdf 線形回帰 正規方程式 正規化項の導入 線形識別 パーセプトロン カーネル法ppt pdf 線形識別の一般化 カーネルの構築法 最大マージン分類器 ソフトマージンの分類器 SVMによる回帰モデル SVM実装上の工夫 クラスタリングppt pdf 距離の定義 階層型クラスタリング K-means モデル推定ppt pdf 潜在変数のあるモデル EMアル

  • PRML/course - 機械学習の「朱鷺の杜Wiki」

    必要な事前知識† 微積分:多変量の微分や積分は必要です.ラグランジュの未定乗数法や簡単な変分も必要ですがこれらは付録に簡単な解説があります.複素数の微積分については不要です. 線形代数:3×3以上の固有値・逆行列,行列に対する微積分は必要ですが,これらについては付録に簡単にまとめられています.\(l^2\)空間やヒルベルト空間,複素数については不要です. 確率:基礎については1章で述べられていますが,確率の扱いや考えに慣れていると便利です.確率測度など公理にまで踏み込んだ知識や,統計の検定などの知識は不要です. ↑ 書に関連する分野† 以下の分野でデータからの予測や分析が必要とされる分野 対象分野:書と直接的な関連がある分野には次のようなものがあります. 機械学習,パターン認識,統計,データマイニング 応用分野:機械学習,パターン認識,統計的予測技術が応用されている分野には次のようなも

  • BLOG::broomie.net: 無料でよめる機械学習・自然言語処理の教科書

    夏いですね.最近この手の記事ばかりで大変恐縮ですが,機械学習に関するウェブ上で手に入る無料のテキストが紹介されていたので,共有したいと思います.ほとんどは以前に僕が紹介している(時々更新しています)「機械学習・自然言語処理のリソースリンク集」に入っているのですが,改めて紹介いたします.おそらく,他ブログでも紹介しているようにも思えますが,このサイトの紹介がてら引用させていただこうと思います. MetaOptimize / 最近ちょっと話題になっている「MetaOptimize /」という機械学習のサイトのQ&Aで紹介されていました.まじめに見ていなかったのですが,このサイト非常に有用でおもしろいですね. 特に同サイトの「qa」はかなり有用かと思いました. フリーの機械学習テキスト 話を戻しますと,興味深いQuestionsがたくさんあるのですが,今回注目したのは「Good Freely A

  • 機械学習 はじめよう 記事一覧 | gihyo.jp

    運営元のロゴ Copyright © 2007-2024 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します⁠。個別にライセンスが設定されている記事等はそのライセンスに従います。

    機械学習 はじめよう 記事一覧 | gihyo.jp
  • 1