タグ

ブックマーク / sinhrks.hatenablog.com (4)

  • Python pandas 欠損値/外れ値/離散化の処理 - StatsFragments

    データの前処理にはいくつかの工程がある。書籍「データ分析プロセス」には 欠損など 前処理に必要なデータ特性の考慮とその対処方法が詳しく記載されている。 が、書籍のサンプルは R なので、Python でどうやればよいかよく分からない。同じことを pandas でやりたい。 データ分析プロセス (シリーズ Useful R 2) 作者: 福島真太朗,金明哲出版社/メーカー: 共立出版発売日: 2015/06/25メディア: 単行この商品を含むブログ (2件) を見る とはいえ、pandas 自身は統計的 / 機械学習的な前処理手法は持っていない。また Python には R と比べると統計的な前処理手法のパッケージは少なく、自分で実装しないと使えない方法も多い。ここではそういった方法は省略し、pandas でできる前処理 / 可視化を中心に書く。 また、方法自体の説明は記載しないので、詳細

    Python pandas 欠損値/外れ値/離散化の処理 - StatsFragments
  • Python pandas 関連エントリの目次 - StatsFragments

    このブログ中の pandas 関連のエントリをまとめた目次です。 最近 pandas 開発チーム と PyData グループ の末席に加えていただき、パッケージ自体の改善にもより力を入れたいと思います。使い方についてご質問などありましたら Twitter で @ ください。 目次につけた絵文字は以下のような意味です。 🔰: 最初に知っておけば一通りの操作ができそうな感じのもの。 🚧: v0.16.0 時点で少し情報が古く、機能の改善を反映する必要があるもの。 🚫: 当該の機能が deprecate 扱いとなり、将来的に 代替の方法が必要になるもの。 基 簡単なデータ操作を Python pandas で行う 🔰 Python pandas でのグルーピング/集約/変換処理まとめ 🔰 また、上記に対応した比較エントリ: R {dplyr}, {tidyr} Rの data.tab

    Python pandas 関連エントリの目次 - StatsFragments
    yahihi
    yahihi 2017/11/23
  • Python pandas プロット機能を使いこなす - StatsFragments

    pandas は可視化のための API を提供しており、折れ線グラフ、棒グラフといった基的なプロットを簡易な API で利用することができる。一般的な使い方は公式ドキュメントに記載がある。 Visualization — pandas 0.17.1 documentation これらの機能は matplotlib に対する 薄い wrapper によって提供されている。ここでは pandas 側で一処理を加えることによって、ドキュメントに記載されているプロットより少し凝った出力を得る方法を書きたい。 補足 サンプルデータに対する見せ方として不適切なものがあるが、プロットの例ということでご容赦ください。 パッケージのインポート import matplotlib.pyplot as plt plt.style.use('ggplot') import matplotlib as mpl m

    Python pandas プロット機能を使いこなす - StatsFragments
    yahihi
    yahihi 2015/11/17
  • Chainer で Deep Learning: model zoo で R-CNN やりたい - StatsFragments

    ニューラルネットワークを使ったオブジェクト検出の手法に R-CNN (Regions with CNN) というものがある。簡単にいうと、R-CNN は以下のような処理を行う。 入力画像中からオブジェクトらしい領域を検出し切り出す。 各領域を CNN (畳み込みニューラルネットワーク) にかける。 2での特徴量を用いて オブジェクトかどうかをSVMで判別する。 R-CNN については 論文著者の方が Caffe (Matlab) での実装 (やその改良版) を公開している。 [1311.2524] Rich feature hierarchies for accurate object detection and semantic segmentation github.com が、自分は Matlab のライセンスを持っていないので Python でやりたい。Python でやるなら 今

    Chainer で Deep Learning: model zoo で R-CNN やりたい - StatsFragments
    yahihi
    yahihi 2015/07/06
  • 1