3つの要点 ✔️ Local-Sensitive-Hashingにより必要な要素同士のAttentionを計算することができるようになった ✔️ Reversible layerによってレイヤー数に比例して増加するactivationを保存するメモリの削減 ✔️ transformerの計算量を$O(L^2)$から$O(L \log L)$まで削減した Reformer: The Efficient Transformer written by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya (Submitted on 13 Jan 2020 (v1), last revised 18 Feb 2020 (this version, v2)) Comments: ICLR 2020 Subjects: Machine Learning (cs.L