http://patshaughnessy.net/2013/10/24/visualizing-garbage-collection-in-ruby-and-python Pat Shaughnessyが、ブタペストで開催されたRUPY2013でのプレゼンの前半を自らのブログで紹介しています。 ガベージコレクタは、「ゴミを集める」という行為だけでなく、「新しいオブジェクトのためにメモリをあてがう。」「不要なオブジェクトを見つける」「不要なオブジェクトからメモリを取り戻す。」という、人間の心臓が血液を浄化するような働きをしている。 この簡単なコードサンプルを見ると、RubyとPythonの記述はよく似ているが、それぞれの言語の内部でのインプリの仕組みは違う。 1) Rubyのメモリ Rubyは、コードが実行される前に、数千のオブジェクトを先につくり、それをリンクされたfree listに置
ニュースアプリSmartNews(https://www.smartnews.be/)の背景のアルゴリズムについてTokyoWebMining30th(http://tokyowebmining30.eventbrite.com/)で話させていただいた際の資料です。 •SmartNews iphone版: https://itunes.apple.com/jp/app/id579581125 •SmartNews Android版 https://play.google.com/store/apps/details?id=jp.gocro.smartnews.android •SmartNews開発者ブログ http://developer.smartnews.be/blog/
私はつい最近まで勘違いしていました。 ここのページに書いてあるような方法で、一様分布する整数が得られると。 int random(int n) { return (int)(( rand() / (RAND_MAX + 1.0) ) * n); } この方法、一見すると実に一様分布が得られそうに見えるんですよね。 どういう思考回路を通っているかというのを自己分析すると、次のような感じです。 1. rand() では 0〜RAND_MAX のランダムな整数が得られる。 2. それを RAND_MAX + 1 で割ると、[0, 1) に一様分布する実数が得られる。 3. [0, 1) の一様な実数を n 倍して小数点以下を切り捨てたら、0 から n-1 に一様分布する整数が得られる。 これの罠なところは、1 と(特に)3 が正しいというところだと思います。 ただ、2 がダウト。 思いっきりダウ
どうやら人間の手で解いたら、簡単に解けてしまうようです。 ここでの難易度の定義に含めていない解法(n国同盟など)を使うと、難しくない問題になっているのかもしれません。 その後調べたところ、基本テクニックだけで解けてしまうことがわかりました。 Pencil Marksが唯一残ったものしか確定しない、というDeterministic Solverを使っていたのが原因で、 難しくない問題を「難しい」と誤判定してしまったようです。 3月13日版よりだいぶ難易度があがったはずです。 概要 スパコンを使って力任せに数独の難しい問題を作ってみたところ、 2013年3月現在、おそらく世界で一番難しい問題を作ることに成功した失敗した。 上図がスパコンを用いて作られた、おそらく世界で一番難しい問題(2013年3月現在)。 後述する難易度の定義では、深さが10、通常幅が183530、平均幅が約100571である
電車の乗り換えはかったるい。なるべく少ないほうがいい。 といっても、たとえば都内の移動で10回も乗り換えなきゃならないってこともない。 実際のところ、どれくらい乗り換えればいいものなのか?調べてみました。
こんにちは。クライアント基盤チームのよやです。 アバター等を表示する為に PNG や JPEG の画像を元に GIF アニメーションを生成する事がよくありますが、GIF は 256色までしか扱えない為、元画像が数万といった単位で色を使っていると減色処理に大変時間がかかります。そこで、ImageMagick の減色処理を改造して高速化した事例をご紹介します。 尚、一度に読む分量ではまとめ切れない為、前編と後編に分けました。前編は減色処理、後編はその改造について説明します。 プログラム構成では上の図の magick/quantize.c が減色処理に相当します。 まず、減色処理の一般的な話から始めます。 減色の利点 Web で見かける画像ファイルの多くは、1つのpixel(描画の最小単位)に対して、Red, Green, Blue が各々8bits で計 24bits(= 3bytes) 、透
HadoopとMahoutにより、ビッグデータでも機械学習を行うことができます。Mahoutで実装されている手法は、全て分散処理できるアルゴリズムということになります。Mahoutで実装されているアルゴリズムは、ここに列挙されています。論文としても、2006年に「Map-Reduce for Machine Learning on Multicore」としていくつかのアルゴリズムが紹介されています。 そこで今回は、(何番煎じか分かりませんが自分の理解のためにも)この論文で紹介されているアルゴリズムと、どうやって分散処理するのかを簡単にメモしておきたいと思います。計算するべき統計量が、summation form(足し算で表現できる形)になっているかどうかが、重要なポイントです。なってない場合は、”うまく”MapReduceの形にバラす必要があります。 ※例によって、間違いがあった場合は随時
プログラマが解くのに1時間かかる問題を機械学習に放り込む話 By ぱろすけ on 4月 11th, 2012 皆様、 Twitter やら facebook で数カ月前に爆発的に拡散された以下の問題をご存知でしょうか。 ご存知の方が多いでしょうね。単に、イコールの左側の4つの数字の丸の数の合計がイコールの右側に等しい、それだけですね。とても簡単な問題です。ちなみに僕は解けませんでした。 これについて、昨日このようなエントリが投稿され、話題になっています。 プログラマが解くのに1時間かかるという問題が普通にプログラマな方法で5分で解ける話 http://d.hatena.ne.jp/nowokay/20120410 こりゃあ炎上するでしょうねえ。だって、プログラマも何も関係なく、ふつうに問題を解いているのですから。 先ほどのエントリでは、イコールの左側の数値は変数であり、それを足しあわ
モバイルゲーム 物凄い勢いで勃興したモバイルゲーム業界は、いろいろな課題や問題に直面しながらも巨大化し、今日の時点でのスマートフォン向けゲームの市場へと継承されていきます。 モバイルゲームの歴史 2001 Javaアプリと3Dゲームの登場 Javaが利用できるようになったことにより、ダウンロード型のゲームが供給できるようになりました。 2002 携帯電話端末の大容量化・3D化競争 Java搭載携帯電話端末が登場してからごく僅か1年の間に、アプリのサイズに関しては10倍に広大化し、表現方法も2Dから3Dにシフトし始めました。J-PHONEは『ゼビウス』や『スペースハリアー』などといった昔のアーケードゲームを、ドコモはSIMCITYなどパソコンで世界的規模のヒットを飛ばしたゲームを主力商品としていました。 2003 モバイルゲームの一般化 メモリの制限が厳しいJava仮想マシン上ではなく、OS
3Dと物理エンジンを使っていろいろな実験を行っているむにむにさんが、「ガンダムを遺伝的アルゴリズムで歩かせた」というムービーをニコニコ動画とYouTubeにアップしています。そもそも遺伝的アルゴリズムというのが何かわからなくても、それを説明してくれるムービーも用意されているので、いったいどれだけすごいことを試行錯誤しているのかがわかるようになっています。 YouTubeでのアカウントは「3D Creature Physics(99munimuni)」という名前になっています。 ガンダムを遺伝的アルゴリズムで歩かせた。walked the Gundam By genetic algorithm - YouTube すでに物理エンジンでガンダムを歩行させることに成功したむにむにさんが挑戦したのが、遺伝的アルゴリズムで歩行を改善していくということ。 このザクっぽい単純モデルだとたくさんのモデルを
最近話題の「日本語入力を支える技術」を途中まで読んだ。 3章がものすごく気合いが入っている。 trie(トライ)というデータ構造の2つの実装、「ダブル配列」と「LOUDS」について詳しく説明がされている。 ダブル配列については、ぼくは以前論文を読んで勉強しようとしたのだが、その時は難しくてあきらめた覚えがある。しかし、この本の説明を読むことで理解ができた。 ありがたい。 感銘を受けたので、この本を教材に友達と2人勉強会をした。 この2人勉強会というのは、ぼくが復習を兼ねて友達に教えるというのがだいたいのスタイル。 しかし、いざやってみるといろいろと難しい。 次のようなところでひっかかるようだ。 例のサイズが小さく、イメージを喚起するのが難しい。 最初の図のノード番号と、最終的なダブル配列上の位置が異なるため、混乱する。 単語終端について言及がないので、どのノードが単語を表しているかがわから
2012年01月17日11:45 カテゴリアルゴリズム百選Tips Algorithm - 連想配列の実装としてのハッシュはオワコン? 珠玉のプログラミング Jon Bentley / 小林健一郎訳 つまり「終わったコンテナ」。 以前からうすぼんやりと考えて来た危惧が、すこしはっきりと見えてきた。 徳丸浩の日記: Webアプリケーションに対する広範なDoS攻撃手法(hashdos)の影響と対策 もうそろそろハッシュ(テーブル)以外の手段の連想配列の実装手段を本格的に模索するべきではないか、と。 そのデータ構造は、君の魂を差し出すに足るものかい? 連想配列(Associative array)がコレクション(Collection)、すなわち数多のデータ構造をまとめるデータ構造としての覇者となったのはもはや疑いようがない事実でしょう「配列で実装されるデータ構造ではなくて、配列を実装するデータ構
by Miss_Bathory 日本だけではなく海外でも人気の高い数字パズル「数独(Sudoku)」。初期に配置するヒントの数は20個~30個ぐらいのものが多く、最小では17個のものが確認されていますが、問題として成立するのがいったいどのラインなのかは結論が出ていなかったのですが、アイルランドの数学者が「ヒントが16以下だと解けない」と結論を出しました。 Mathematician claims breakthrough in Sudoku puzzle : Nature News & Comment Gary McGuire's Minimum Sudoku Page, Sudoku Checker ユニバーシティ・カレッジ・ダブリンの数学者Gary McGuireさんは、数独においてヒントが16個以下のものは解法を持ちえないということを証明しました。このMcCuireさんの証明は、数学
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く