Perplexity (PPL) is one of the most common metrics for evaluating language models. Before diving in, we should note that the metric applies specifically to classical language models (sometimes called autoregressive or causal language models) and is not well defined for masked language models like BERT (see summary of the models). Perplexity is defined as the exponentiated average negative log-like
2048 Token Examples":1,"Collaboration for Effective Communication.":1,"Taco Seasoning Recipe":1,"Invite collaborator privately.":1,"提高自律能力":1,"Stinky Doge Coin Rap":1,"エクセル:文字列の結合 (Excel: Concatenating Strings)":1}}}},{"name":"topic","align":"right","type":"null","statistics":{"column_name":"topic","column_type":"string_label","column_statistics":{"nan_count":1000891,"nan_proportion":0.99934,"no_l
Intended Uses Primary use cases The model is intended for broad commercial and research use in English. The model provides uses for general purpose AI systems and applications with visual and text input capabilities which require memory/compute constrained environments; latency bound scenarios; general image understanding; OCR; chart and table understanding. Our model is designed to accelerate res
Updated on 23-05-2024: We have introduced a few changes to the transformers PaliGemma implementation around fine-tuning, which you can find in this notebook. PaliGemma is a new family of vision language models from Google. PaliGemma can take in an image and a text and output text. The team at Google has released three types of models: the pretrained (pt) models, the mix models, and the fine-tuned
TimesFM TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting. Resources and Technical Documentation: Paper: A decoder-only foundation model for time-series forecasting, to appear in ICML 2024. Google Research blog GitHub repo Authors: Google Research This is not an officially supported Google product. Checkpoin
","eos_token":"","pad_token":null,"unk_token":"","use_default_system_prompt":true}},"createdAt":"2024-05-09T07:16:24.000Z","discussionsDisabled":false,"downloads":324,"downloadsAllTime":3746,"id":"DataPilot/ArrowPro-7B-KUJIRA","isLikedByUser":false,"isWatchedByUser":false,"inference":"not-popular-enough","lastModified":"2024-05-13T14:08:14.000Z","likes":60,"pipeline_tag":"text-generation","library
","chat_template":"{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }
を埋めてください。htmlタグを考慮する必要があります。完成したhtmlドキュメントを出力してください。","similarity":0.3142857142857143},{"instruction":"数学の問題を解いてください。途中経過も必要です。","similarity":0.3137254901960784},{"instruction":"与えられた文章と数字に対し、文章内でその数字に対応する単語を返してください。各単語は空白で区切られ、位置インデックスは1から始まります。","similarity":0.3116883116883117},{"instruction":"段落から全ての場所の名前を抜き出してください。異なる場所はセミコロンで区切ってください。","similarity":0.29508196721311475},{"instruction":"テキスト中のト
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く