CodeforcesやProject Eulerの問題には、無限リストをうまく使うと綺麗に解くことができる問題がたくさんあります。 数列の性質から探索範囲の上界を決めて解を探索することが多いのですが、きちんとした根拠を持って上界を決めることができることは少なく、余裕を持って十分に広い範囲で計算して解を求める解法がよく取られます。 Haskellの特徴である遅延評価とその洗練された糖衣構文を用いると、無限リストを簡単に扱うことができます。 上界を適当に定める解法よりも、より宣言的で美しく、時に効率的なコードで同じ解を得ることができます。 しかし、無限リストをきちんと、それも無限個の無限リストをきちんと扱うとなると、意外と苦労します。 この記事では、無限個の無限リストをソートされた形で結合する方法について説明します。 一般的な無限リストではなく、条件はかなり絞っていてます (そうでないと原理的