複数ラベルの分類問題を評価しようと思ってMean Average Precisionを計算しようと思ったが、Pythonの機械学習ライブラリのscikit-learn(sklearn)にはaverage_precision_score()関数とlabel_ranking_average_precision_score()関数があってどういう違いがあるのかドキュメントを読んでもいまいちよくわからなかったので調べました とりあえず最初に結論を書いておくと、複数ラベルの分類問題でよく使われるMean Average Precisionの計算にはlabel_ranking_average_precision_score()関数を使えばよさそう 追記: バージョン0.19からどちらも同じ挙動になったようなので注意(元々のlabel_ranking_average_precision_score()