タグ

関連タグで絞り込む (2)

タグの絞り込みを解除

Pythonと機械学習に関するyukirelaxのブックマーク (3)

  • Kerasで多変量LSTM - Qiita

    単変量の時系列はkerasでもよく見るのですが、株価や売上などを予測する時などには複数の要因が関わってきますので、今回は複数の時系列データを使って予測してみました。 ソースの紹介 コード 「MACHINE LEARNING MASTERY」で紹介されているコードを基に、多変量対応にしました。 Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras jupyterで見れるコードの全貌はこちら https://github.com/tizuo/keras/blob/master/LSTM%20with%20multi%20variables.ipynb データ サンプルデータは以下から拝借しました。一番左のice_salesを予測します。 アイスクリームの売れ方 ice_sales yea

    Kerasで多変量LSTM - Qiita
  • F値 - 機械学習の「朱鷺の杜Wiki」

    正解率 (精度, accuracy):正や負と予測したデータのうち,実際にそうであるものの割合 \[\mathrm{Accuracy}=\frac{TP+TN}{TP+FP+TN+FN}\] 適合率 (precision):正と予測したデータのうち,実際に正であるものの割合 \[\mathrm{Precision}=\frac{TP}{TP+FP}\] 再現率 (recall, 感度, sensitivity):実際に正であるもののうち,正であると予測されたものの割合 \[\mathrm{Recall}=\frac{TP}{TP+FN}\] 特異度 (specificity):実際に負であるもののうち,負であると予測されたものの割合 \[\mathrm{Specificity}=\frac{TN}{FP+TN}\] F値 (F尺度, F-measure):再現率と適合率の調和平均. \[\

  • Python でデータサイエンス

    このサイトについて このサイトでは、データ加工や集計、統計分析などインタラクティブに実行されるスクリプトやバッチプログラム、格的な Web アプリケーションの実装まで、多彩な機能を持ちながらも初心者にも扱いやすいプログラミング言語 Python (パイソン) を使ったデータの統計分析の手順や使い方について紹介します。 初めてプログラムに触れる人や、R や SAS, Ruby のような言語のプログラミング経験はあっても、Python をあまり扱った経験のない初心者向けに理解できるような内容としてまとめています。 また、格的な統計分析(基統計量や多変量解析、データマイニング、機械学習)を学んだことがない人でも理解できるよう、統計(アナリティクス)の解説も必要に応じて述べています。 このサイトで提供できる情報を通して、皆さんが Python を使ったビッグデータ解析を思いのままに使いこなせ

  • 1