タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

機械学習とニューラルネットに関するzia_glassのブックマーク (2)

  • Wasserstein GAN [arXiv:1701.07875]

    概要 Wasserstein GANを読んだ Chainerで実装した はじめに Wasserstein GAN(以下WGAN)はEarth Mover’s Distance(またはWasserstein Distance)を最小化する全く新しいGANの学習方法を提案しています。 実装にあたって事前知識は不要です。 私はEarth Mover’s Distance(EDM)などを事前に調べておきましたが実装に関係ありませんでした。 またRedditのWGANのスレッドにて、GANの考案者であるIan Goodfellow氏や論文の著者Martin Arjovsky氏が活発に議論を交わしています。 Martin Arjovsky氏の実装がGithubで公開されていますので実装には困らないと思います。 私はChainer 1.20で実装しました。 https://github.com/mus

  • 畳み込みニューラルネットワークの可視化 - 人工知能に関する断創録

    Deep Learningの学習結果(重み)はブラックボックスで、隠れ層のユニット(特に深い層の!)が一体何を学習したのかがよくわからないと長年言われてきた。しかし、今回紹介する方法を使うとニューラルネットが何を学習したのか目で見える形で表現できる。 畳み込みニューラルネットで学習したフィルタの可視化というと以前やったように学習した第1層のフィルタの重みを直接画像として可視化する方法がある。 しかし、畳み込みフィルタのサイズは基的に数ピクセル(MNISTの例では5x5ピクセル程度)のとても小さな画像なのでこれを直接可視化しても何が学習されたか把握するのはとても難しい。たとえば、MNISTを学習した畳み込みニューラルネット(2016/11/20)のフィルタを可視化しても各フィルタがどの方向に反応しやすいかがわかる程度だ。 各フィルタが何を学習したかを可視化する別のアプローチとして各フィルタ

    畳み込みニューラルネットワークの可視化 - 人工知能に関する断創録
  • 1