いま大会上位に位置するDeep Learning系の将棋AIは、評価関数として画像認識などでよく使われているResNetを用いている。ResNetについては機械学習を齧っている人ならば誰でも知ってるぐらい有名だと思うので、詳しい説明は割愛する。(ググれば詳しい説明がいくらでも出てくる) 囲碁AIの世界では、このResNetのブロック数を大きくしていくのが一つの潮流としてある。ブロック数が多いと言うことは、より層の数が増え(よりdeepになり)、1局面の評価に、より時間を要するようになるということである。それと引き換えに評価精度がアップするから、トータルでは得をしていて、棋力が向上するというわけである。 ところが大きいブロック数になればなるほど学習に要する教師局面の数が増える。学習もブロック数に応じた時間を要するようになるから、そう簡単に大きくはできない。しかし囲碁AIの方は、中国テンセント