タグ

3次元とmathに関するHKRWのブックマーク (2)

  • ユークリッド空間 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ユークリッド空間" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2017年6月) この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。 脚注を導入して、記事の信頼性向上にご協力ください。(2023年9月) 三次元ユークリッド空間の各点は三つの成分の座標で決定される。 ユークリッド空間(ユークリッドくうかん、英: Euclidean space)とは、数学における概念の1つで、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびそ

    ユークリッド空間 - Wikipedia
  • バナッハ=タルスキーのパラドックス - Wikipedia

    バナッハ=タルスキーのパラドックス: 球を適当に分割して、組み替えることで、元と同じ球を2つ作ることができる。 バナッハ=タルスキーのパラドックス (Banach-Tarski paradox) は、球を3次元空間内で、有限個の部分に分割し、それらを回転・平行移動操作のみを使ってうまく組み替えることで、元の球と同じ半径の球を2つ作ることができるという定理(ただし、各断片は通常の意味で体積を定義できない)。この操作を行うために球を最低5つに分割する必要がある。 バナッハ=タルスキーの証明では、ハウスドルフのパラドックスが援用され、その後、多くの人により証明の最適化、様々な空間への拡張が行われた。 結果が直観に反することから、定理であるが「パラドックス」と呼ばれる。証明の1箇所で選択公理を使うため、選択公理の不合理性を論じる文脈で引用されることがある。ステファン・バナフ(バナッハ)とアルフレト

    バナッハ=タルスキーのパラドックス - Wikipedia
  • 1