タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとProgrammingとtechnologyに関するHeavyFeatherのブックマーク (6)

  • 類似画像検索システムを作ろう - 人工知能に関する断創録

    C++版のOpenCVを使ってカラーヒストグラムを用いた類似画像検索を実験してみました。バッチ処理などのスクリプトはPythonを使ってますが、PerlでもRubyでも似たような感じでできます。 指定した画像と類似した画像を検索するシステムは類似画像検索システムと言います。GoogleYahoo!のイメージ検索は、クエリにキーワードを入れてキーワードに関連した画像を検索しますが、類似画像検索ではクエリに画像を与えるのが特徴的です。この分野は、Content-Based Image Retrieval (CBIR)と呼ばれており、最新のサーベイ論文(Datta,2008)を読むと1990年代前半とけっこう昔から研究されてます。 最新の手法では、色、形状、テクスチャ、特徴点などさまざまな特徴量を用いて類似度を判定するそうですが、今回は、もっとも簡単な「色」を用いた類似画像検索を実験してみます

    類似画像検索システムを作ろう - 人工知能に関する断創録
  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure
  • シムシティーの仕組み

    シムシティーを作り始めていちばん最初に考えたのは、街を一種の生き物のように表現できないかってことだった。 僕が街についてどう考えているかはすでに説明したけど、大事なのは街を構成する建物とか道路じゃなくって、そこでどんな活動が行なわれているかってことだと思うんだ。道路を車が走り、電車が動き、人々が動き回り、常に要素が変化し続ける“動きのある”システム。街を表現する方法っていうと誰でも地図を思い浮かべると思うけど、僕は動きがない地図じゃなくって、たとえば飛行機から眺めた街、動きのある世界をディスプレイに表現しようって考えた。それこそが僕の考える街の姿だからね。 それともう一つ考えたことは、プレイヤーに伝える情報をできるだけわかりやすく、それも“面白い”って思えるような形で表現しようってことだった。シミュレーション・ソフトっていうとたいてい数値や図表がたくさん出てくるけれど、数字が並んでいるのを

  • 「物理法則を自力で発見」した人工知能 | WIRED VISION

    前の記事 「衛星成功に総書記は涙」:北朝鮮の核再開宣言とミサイル輸出 「物理法則を自力で発見」した人工知能 2009年4月15日 Brandon Keim Image credit: Science、サイトトップの画像はフーコーの振り子。Wikimedia Commonsより 物理学者が何百年もかけて出した答えに、コンピューター・プログラムがたった1日でたどり着いた。揺れる振り子の動きから、運動の法則を導き出したのだ。 コーネル大学の研究チームが開発したこのプログラムは、物理学や幾何学の知識を一切使わずに、自然法則を導き出すことに成功した。 この研究は、膨大な量のデータを扱う科学界にブレークスルーをもたらすものとして期待が寄せられている。 科学は今や、ペタバイト級[1ペタバイトは100万ギガバイト]のデータを扱う時代を迎えている。あまりに膨大で複雑なため、人間の頭脳では解析できないデータセ

  • 新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改

    新はてブ正式リリース記念ということで。もうリリースから何週間も経っちゃったけど。 新はてなブックマークではブックマークエントリをカテゴリへと自動で分類しているが、このカテゴリ分類に使われているアルゴリズムはComplement Naive Bayesらしい。今日はこのアルゴリズムについて紹介してみる。 Complement Naive Bayesは2003年のICMLでJ. Rennieらが提案した手法である。ICMLというのは、機械学習に関する(たぶん)最難関の学会で、採択率はここ数年は30%を切っている。2003は119/371で、32.1%の採択率だったようだ。 Complement Naive Bayesの位置づけは 実装が簡単 学習時間が短い 性能もそこそこよい という感じで、2003年段階にあっても、絶対的な性能ではSVMに負けていた。しかし、学習が早いというのは実アプリケーシ

    新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改
  • 文書比較(diff)アルゴリズム

    文書比較(diff)アルゴリズム 前のドキュメント 次のドキュメント ViViの文書比較(diff)機能で使用しているアルゴリズムについて解説する。 これらのアルゴリズムは Myers 氏らの論文によるもので、氏は筆者のためにわざわざ論文をWebサイトで入手可能な形式にしてくださった。この場を借りてお礼申し上げる。 オリジナル論文は以下のWebサイトから入手可能である。 http://www.cs.arizona.edu/people/gene [1] E.W.Myers, "An O(ND) Difference Algorithm and Its Variations", Algorithmica, 1 (1986), pp.251-266 [2] S. Wu, U. Manber, G. Myers and W. Miller, "An O(NP) Sequence Comparis

  • 1