タグ

algorithmとnlpに関するHeavyFeatherのブックマーク (15)

  • 単語と文字の話 - Preferred Networks Research & Development

    4月からPFIで働いてます。海野です。 今日は単語の話をします。読み物的な話なので軽く読んでください。 テキストデータなどの自然文を機械処理するときには、まず最初に単語に分割するということをよく行います。一般的にはMeCabやChasenといった形態素解析エンジンに投げて行います。形態素と単語の区別という話もあるのですが、ここでは大雑把に「連続した文字列の単位」くらいの意味で話します。 検索という文脈ですと形態素インデックスという言葉がありますが、これは検索の最小単位を文字単位ではなくて形態素の単位にするということです。例えば「東京都」は「東京」「都」に分かれるため、「京都」というクエリに対して見つかるのを防ぐなど、精度を上げる効果があります。反面、深刻な検索漏れを引き起こす可能性があるため嫌われることが多いです。こうした漏れは検索に限らず、テキストマイニングなどの文脈でも問題となることが

  • Confidence Weighted Linear Classificationを読んだ - 射撃しつつ前転 改

    ICML2008で発表されたDredzeらのConfidence Weighted Linear Classificationを読んだ。これは線形分類器を学習する新しいオンライン学習型アルゴリズムの提案である。すぐに使える実装としてはOLLというオープンソースのライブラリがあり、実際に良い実験結果が出ているようだ。 Confidence Weightedのアイデアは、よく出てくる素性に関しては一回の更新における数値の変更量を減らしてやり、あまり出てこない素性に関しては、一回の更新でぐっと値を変更してやろう、というものである。 こういった新しい更新方法を考案した動機を明らかにするために、Perceptronを使って、単語を素性として評判分類の学習を行うような問題を考えてみる。肯定的な評価のサンプルとして"I liked this author."というものがあったとすると、このサンプルの分類

    Confidence Weighted Linear Classificationを読んだ - 射撃しつつ前転 改
    HeavyFeather
    HeavyFeather 2010/03/08
    分類器のオンライン学習について
  • マルコフ連鎖で日本語をもっともらしく要約する - ザリガニが見ていた...。

    そもそも、マルコフ連鎖とは何なのか?全く聞いたこともなかった。そして、文章を要約するのはとっても高度なことだと思っていて、自分のレベルではその方法を、今まで思い付きもしなかった。 しかし、以下のようなシンプルなRubyコードでそれが出来てしまうと知った時、目から鱗である...。一体、何がどうなっているのだ?コードを追いながら、マルコフ連鎖を利用するという発想の素晴らしさを知った! 作業環境 MacBook OSX 10.5.7 ruby 1.8.6 (2008-08-11 patchlevel 287) [universal-darwin9.0] mecab utf8環境でインストール済み マルコフ連鎖に出逢う rssを流し読みしていると、以下の日記に目が止まった。(素晴らしい情報に感謝です!) MeCabを使ってマルコフ連鎖 一体何が出来るコードなのか、日記を読んだだけではピンと来なかっ

    マルコフ連鎖で日本語をもっともらしく要約する - ザリガニが見ていた...。
  • 軽量データクラスタリングツールbayon - mixi engineer blog

    逆転検事を先日クリアして、久しぶりに逆転裁判1〜3をやり直そうか迷い中のfujisawaです。シンプルなデータクラスタリングツールを作成しましたので、そのご紹介をさせていただきます。 クラスタリングとは クラスタリングとは、対象のデータ集合中で似ているもの同士をまとめて、いくつかのグループにデータ集合を分割することです。データマイニングや統計分析などでよく利用され、データ集合の傾向を調べたいときなどに役に立ちます。 例えば下図の例ですと、当初はデータがゴチャゴチャと混ざっていてよく分からなかったのですが、クラスタリングすることで、実際は3つのグループのデータのみから構成されていることが分かります。 様々なクラスタリング手法がこれまでに提案されていますが、有名なところではK-means法などが挙げられます。ここでは詳細については触れませんが、クラスタリングについてより詳しく知りたい方は以下の

    軽量データクラスタリングツールbayon - mixi engineer blog
  • きまぐれ日記: 「読めてしまう」コピペがなぜ読めてしまうのか

    http://www.asks.jp/users/hiro/59059.html http://www.itmedia.co.jp/news/articles/0905/08/news021.html 最初読んだとき、違和感なく読めてしまったのですが、よくよく見てみると、そんなトリックがあったのですね。 さて、この「読めてしまう」がなぜよめてしまうのでしょうか? 人間の言語モデルの単語パープレキシティは、約100ぐらいであると言われています。どういうことかというと、 人間が文章を読んでいるときに、次の単語を過去の文章から推測するのは 1/100 程度の 確率で正解するということです。 件のコピペですが、最初の文字は変わらないので、その正解率は平仮名の数(52)倍になります。 すなわち、52/100 =~ 0.5 実際には、最後の文字も変わらないし、 単語の長さが変わらないというもの、大きな

    HeavyFeather
    HeavyFeather 2009/05/13
    パープレキシティの問題で、機械にも高い精度で元文章を推測可能。
  • ベイズを学びたい人におすすめのサイト - download_takeshi’s diary

    ベイジアンフィルタとかベイズ理論とかを勉強するにあたって、最初はなんだかよくわからないと思うので、 そんな人にお勧めのサイトを書き残しておきます。 @IT スパム対策の基技術解説(前編)綱引きに蛇口当てゲーム?!楽しく学ぶベイズフィルターの仕組み http://www.atmarkit.co.jp/fsecurity/special/107bayes/bayes01.html いくつかの絵でわかりやすく解説してあります。 自分がしるかぎり、最もわかりやすく親切に解説してる記事です。数学とかさっぱりわからない人はまずここから読み始めるといいでしょう。 茨城大学情報工学科の教授のページから http://jubilo.cis.ibaraki.ac.jp/~isemba/KAKURITU/221.pdf PDFですが、これもわかりやすくまとまってます。 初心者でも理解しやすいし例題がいくつかあ

    ベイズを学びたい人におすすめのサイト - download_takeshi’s diary
  • Aho Corasick 法 - naoyaのはてなダイアリー

    適当な単語群を含む辞書があったとします。「京都の高倉二条に美味しいつけ麺のお店がある」*1という文章が入力として与えられたとき、この文章中に含まれる辞書中のキーワードを抽出したい、ということがあります。例えば辞書に「京都」「高倉二条」「つけ麺」「店」という単語が含まれていた場合には、これらの単語(と出現位置)が入力に対しての出力になります。 この類の処理は、任意の開始位置から部分一致する辞書中のキーワードをすべて取り出す処理、ということで「共通接頭辞検索 (Common Prefix Search)」などと呼ばれるそうです。形態素解析Wikipediaはてなキーワードのキーワードリンク処理などが代表的な応用例です。 Aho Corasick 法 任意のテキストから辞書に含まれるキーワードをすべて抽出するという処理の実現方法は色々とあります。Aho Corasick 法はその方法のひと

    Aho Corasick 法 - naoyaのはてなダイアリー
  • 自然言語処理は Python がいちばん - 武蔵野日記

    現在大学1年生の人で3年後には NAIST に (というか松研に) 来たいという人から「どんなプログラミング言語やっておくといいですか」と質問されたりするのだが、なかなか答えるのは難しい。自分は PerlPython がメインでときどき C++/C# を使ったりするのだが、どれが一番いいかはなんとも言えないので、自然言語処理以外に転向する可能性も考えると、C とか C++ とか Java とか(授業でそちらをやるのであれば)を最初の武器に選んだ方がいいのでは、と思ってはいる。 そんなこんなで最近 Hal Daume III (機械学習を用いた自然言語処理では非常に有名な人) のブログで Language of Choice というタイムリーなエントリーが出ていたので、紹介すると、「それなりに大きな自然言語処理のプロジェクトでどのプログラミング言語を使うのか」というアンケート結果が出

    自然言語処理は Python がいちばん - 武蔵野日記
  • 編集距離 (Levenshtein Distance) - naoyaのはてなダイアリー

    昨日 最長共通部分列問題 (LCS) について触れました。ついでなので編集距離のアルゴリズムについても整理してみます。 編集距離 (レーベンシュタイン距離, Levenshtein Distance) は二つの文字列の類似度 (異なり具合) を定量化するための数値です。文字の挿入/削除/置換で一方を他方に変形するための最小手順回数を数えたものが編集距離です。 例えば 伊藤直哉と伊藤直也 … 編集距離 1 伊藤直と伊藤直也 … 編集距離 1 佐藤直哉と伊藤直也 … 編集距離 2 佐藤B作と伊藤直也 … 編集距離 3 という具合です。 編集距離はスペルミスを修正するプログラムや、近似文字列照合 (検索対象の文書から入力文字にある程度近い部分文字列を探し出す全文検索) などで利用されます。 編集距離算出は動的計画法 (Dynamic Programming, DP) で計算することができることが

    編集距離 (Levenshtein Distance) - naoyaのはてなダイアリー
  • 最長共通部分列問題 (Longest Common Subsequence) - naoyaのはてなダイアリー

    部分列 (Subsequence) は系列のいくつかの要素を取り出してできた系列のことです。二つの系列の共通の部分列を共通部分列 (Common Subsecuence)と言います。共通部分列のうち、もっとも長いものを最長共通部分列 (Longest Common Subsequence, LCS) と言います。 X = <A, B, C, B, D, A, B> Y = <B, D, C, A, B, A> という二つの系列から得られる LCS は <B, C, B, A> で、その長さは 4 です。長さ 2 の<B, D> の長さ 3 の <A, B, A> なども共通部分列ですが、最長ではないのでこれらは LCS ではありません。また、LCS は最長であれば位置はどこでも良いので、この場合 <B, D, A, B> も LCS です。 LCS は動的計画法 (Dynamic Prog

    最長共通部分列問題 (Longest Common Subsequence) - naoyaのはてなダイアリー
  • 大規模データを基にした自然言語処理 - DO++

    人工知能問題研究会 (SIG-FPAI)でタイトルの題目で一時間ほど話してきました。 発表資料 [pptx] [pdf] 話した内容は - 自然言語処理における特徴ベクトルの作り方と、性質 - オンライン学習, Perceptron, Passive Agressive (PA), Confidence Weighted Learning (CW) 確率的勾配降下法 (SGD) - L1正則化, FOLOS - 索引を用いた効率化, 全ての部分文字列を利用した文書分類 で、スライドで70枚ぐらい。今までの発表とかぶっていないのはPA CW SGD FOLOSあたりでしょうか オンライン学習、L1正則化の話がメインになっていて、その両方の最終形の 確率的勾配降下法 + FOLOSの組み合わせは任意の損失関数に対してL1/L2正則化をかけながらオンライン学習をとても簡単にできるという一昔前

    大規模データを基にした自然言語処理 - DO++
  • 人工無能の作り方

    書いた人 INA 人工無能とは? 人間っぽく話すプログラムのこと。会話を理解しているというよりは、なんかそれっぽいことを話すだけのものが多い。 今回は「日語のようなものを話す人工無能」を作ってみたので、その簡単な仕組みと工夫した点について少し書いてみることにする。 動機 うちのサークルのメンバーがよく集まってるチャット。とてもマニアックな どうしようもない 会話が繰り広げられているわけだが、ちょっと物足りない。 そうだ! 萌キャラがいないじゃないか! 「ないなら作ればいいじゃない?」 材料 MeCab 形態素解析エンジン 難しいことは知らなくても問題ない。 「私は変な人ではない」 ↓ 私 名詞,代名詞,一般,*,*,*,私,ワタシ,ワタシ は 助詞,係助詞,*,*,*,*,は,ハ,ワ 変 名詞,形容動詞語幹,*,*,*,*,変,ヘン,ヘン な 助動詞,*,*,*,特殊・ダ,体言接続,だ,

  • 自然言語処理における類似度学習(機械学習における距離学習)について - 武蔵野日記

    Twitter でグラフ理論に関する話題が上がっていたので、最近調べている距離学習(distance metric learning)について少しまとめてみる。カーネルとか距離(類似度)とかを学習するという話(カーネルというのは2点間の近さを測る関数だと思ってもらえれば)。 この分野では Liu Yang によるA comprehensive survey on distance metric learning (2005) が包括的なサーベイ論文として有名なようだが、それのアップデート(かつ簡略)版として同じ著者によるAn overview of distance metric learning (2007) が出ているので、それをさらに簡略化してお届けする(元論文自体文は3ページしかないし、引用文献のあとに表が2ページあって、それぞれ相違点と共通点がまとまっているので、これを見ると非

    自然言語処理における類似度学習(機械学習における距離学習)について - 武蔵野日記
  • 新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改

    新はてブ正式リリース記念ということで。もうリリースから何週間も経っちゃったけど。 新はてなブックマークではブックマークエントリをカテゴリへと自動で分類しているが、このカテゴリ分類に使われているアルゴリズムはComplement Naive Bayesらしい。今日はこのアルゴリズムについて紹介してみる。 Complement Naive Bayesは2003年のICMLでJ. Rennieらが提案した手法である。ICMLというのは、機械学習に関する(たぶん)最難関の学会で、採択率はここ数年は30%を切っている。2003は119/371で、32.1%の採択率だったようだ。 Complement Naive Bayesの位置づけは 実装が簡単 学習時間が短い 性能もそこそこよい という感じで、2003年段階にあっても、絶対的な性能ではSVMに負けていた。しかし、学習が早いというのは実アプリケーシ

    新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改
  • DO++: 機械学習による自然言語処理チュートリアル

    自然言語処理のときに使う機械学習手法のテクニックをざーっと2時間程度で紹介してほしいとのことだったので今日話してきました。基的に、そんなに頑張らなくても効果が大きいものを中心に説明(特にパーセプトロンとか)を説明してます。 紹介した手法はパーセプトロン、最大エントロピー、正則化、多クラス分類、系列分類(CRF, Structured Perceptron)などなどです。どれも一かじりする感じで網羅的に見る方を優先してます。個々の詳しい話はそれぞれの文献や実装などを当たってみてください。 スライド [ppt] [pdf] ここで話しているのは線形識別モデルの教師有り学習が中心で教師無し学習(クラスタリングなど)など他の自然言語処理を支える技術は省いてます。 こういうのを使って(使わなくてもいいけど)どんどんアプリケーション作らないといかんね。 Tarot is not used to ma

    DO++: 機械学習による自然言語処理チュートリアル
  • 1