EDAの主な目的は、仮定を行う前にデータを確認できるようにすることです。明らかなエラーを特定するだけでなく、データ内のパターンをより深く理解し、外れ値や異常なイベントを検知して、変数間の興味深い関係を見つけることもできます。 データサイエンティストがこの探索的分析を使用すると、自分たちが出した結果が妥当で、望ましいビジネスの成果や目標に適用できることを確認できます。 EDAはまた、利害関係者がしている質問が適切かどうかを確認することで、利害関係者を支援します。 EDAは、標準偏差、カテゴリ変数、信頼区間に関する質問に答えるのに役立ちます。 EDAが完了してインサイトが得られると、その機能を活用して、機械学習を含む、より高度なデータ分析やモデリングを行うことができます。 EDAツールで実行できる具体的な統計関数と手法には、以下のようなものがあります。 クラスタリングおよび次元削減手法。これは