タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

PROGRAMMINGとalgorithmとmapreduceに関するItisangoのブックマーク (2)

  • MapReduce - Wikipedia

    MapReduce(マップリデュース)は、コンピュータ機器のクラスター上での巨大なデータセットに対する分散コンピューティングを支援する目的で、Googleによって2004年に導入されたプログラミングモデルである。 このフレームワークは関数型言語でよく使われるMap関数とReduce関数からヒントを得て作られているが、フレームワークにおけるそれらの用いられ方は元々のものと同じではない。 MapReduceのライブラリ群は、C++、C#、Erlang、Java、OCaml、PerlPythonPHPRuby、F#、R言語、MATLAB等のプログラミング言語で実装されている。 MapReduceは巨大なデータセットを持つ高度に並列可能な問題に対して、多数のコンピュータ(ノード)の集合であるクラスター(各ノードが同じハードウェア構成を持つ場合)もしくはグリッド(各ノードが違うハードウェア構成

  • GoogleのMapReduceアルゴリズムをJavaで理解する

    GoogleMapReduceアルゴリズムをJavaで理解する:いま再注目の分散処理技術(前編)(1/2 ページ) 最近注目を浴びている分散処理技術MapReduce」の利点をサンプルからアルゴリズムレベルで理解し、昔からあるJava関連の分散処理技術を見直す特集企画(編集部) いま注目の大規模分散処理アルゴリズム 最近、大規模分散処理が注目を浴びています。特に、「MapReduce」というアルゴリズムについて目にすることが多くなりました。Googleの膨大なサーバ処理で使われているということで、ここ数年の分散処理技術の中では特に注目を浴びているようです(参考「見えるグーグル、見えないグーグル」)。MapReduceアルゴリズムを使う利点とは、いったい何なのでしょうか。なぜ、いま注目を浴びているのでしょうか。 その詳細は「MapReduce : Simplified Data Proc

    GoogleのMapReduceアルゴリズムをJavaで理解する
  • 1