アプリケーションの分割のアプローチ ●4つのアプローチ - ビジネスファンクション - 動詞/ユースケース - 名詞/リソース - 境界づけられたコンテキスト ● トランザクションの分割 - パイプライン化 (VETRO) - コーディネート (Saga) - 状態更新の非同期化 ( Event History - State Materialize - Domain Specific Query ) Read less
アプリケーションの分割のアプローチ ●4つのアプローチ - ビジネスファンクション - 動詞/ユースケース - 名詞/リソース - 境界づけられたコンテキスト ● トランザクションの分割 - パイプライン化 (VETRO) - コーディネート (Saga) - 状態更新の非同期化 ( Event History - State Materialize - Domain Specific Query ) Read less
今年3月に政府のAI戦略が年間25万人を目標にAI人材を育てるとぶち上げたのに続いて、教育再生会議が全ての大学生がAIなどの基礎的な素養を身につけられるように標準カリキュラムを作成することを提言した。ガートナーが2017年1月に産業界で2020年末時点で30万人以上のIT人材(原典を確認したところAI人材ではなかったようですね)が不足するといったらしいのだが、今からカリキュラムをいじったところで2030年くらいにならないとAIネイティブな新入社員は入ってこないし、その頃まで深層学習が流行っているのか、NVidiaが残ってるのか、PythonやTensorFlowが広く使われているのか、GAFAがどうなっているかなんてさっぱり見当がつかない。 残念ながら私たちは2010年代に深層学習の実用化の局面で米国に負けたのであって、いまから教育をいじるといったって泥棒を捕らえて縄を綯うような話である。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く