db analytics showcase Sapporo 2017 発表資料 http://www.db-tech-showcase.com/dbts/analyticsRead less
統計学や機械学習をを勉強していると「尤度」という概念に出会います。まず読めないというコメントをいくつかいただきましたが、「尤度(ゆうど)」です。「尤もらしい(もっともらしい)」の「尤」ですね。犬 じゃありませんw 確率関数や確率密度関数を理解していれば数式的にはこの尤度を処理できると思うのですが、少し直感的な理解のためにグラフィカルに解説を試みたいと思います。 コードの全文はGithub( https://github.com/matsuken92/Qiita_Contents/blob/master/General/Likelihood.ipynb )にも置いてあります。 正規分布を例にとって 正規分布の確率密度関数は f(x)={1 \over \sqrt{2\pi\sigma^{2}}} \exp \left(-{1 \over 2}{(x-\mu)^2 \over \sigma^2
本講座と併せて学習していただくことで、よりデータサイエンスへの理解が深まりますので、ぜひご受講ください。 こちらのページをご参照ください。 第1週:統計データを用いた分析事例を知り、 統計リテラシーを学ぶ ・大人がデータサイエンスを学ぶべき理由 ・統計データからわかること① ・統計データからわかること② ・統計データからわかること③ ・統計リテラシーの重要性 ・統計を利用する際の注意点 第2週:データ分析に必要な統計学の基礎を学ぶ ・データの種類 ・代表値~平均・中央・最頻値 ・ヒストグラムと相対度数 ・四分位・パーセンタイル・箱ひげ図 ・分散・標準偏差 ・相関関係 ・回帰分析 ・標本分布 ・信頼区間
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く