ドットインストール代表のライフハックブログ
By Kai Schreiber IT技術の進化のスピードには目を見張るものがありますが、それを支えているのはアルゴリズムと呼ばれる処理方法(技術的アイデア)です。さまざまなアルゴリズムの中でも、コンピュータの進化に革命的な影響をもたらしたとされる偉大なアルゴリズムは以下の通りです。 Great Algorithms that Revolutionized Computing http://en.docsity.com/news/interesting-facts/great-algorithms-revolutionized-computing/ ◆ハフマン符号(圧縮アルゴリズム) Huffman coding(ハフマン符号)は、1951年にデービッド・ハフマン氏によって開発されたアルゴリズム。頻出頻度の大小によって対戦するトーナメントツリーを考えて、ブロックごとに0と1の符号をもたせる
2進数、16進数と10進数は、プログラミングなどをする際に知っておいたほうが良い知識です。 図書館とあまり関係がないかも知れませんが、頭の体操とでも思ってください。 10進数(Decimal Number)は、0から9までの10個の数字を使って数を表現します。 数は、0,1,2,3,4,5,6,7,8,9と順に増え、次に位が増えて10になります。 このようにして、10進数は、1、10、100、1000、10000…と位が繰り上がります。 1は10の0乗(100)、10は10の1乗(101)、100は10の2乗(102)、1000は10の3乗(103)…と言い換えることができます。 ですから、10進数は、100、101、102、103…と位が繰り上がるとも言えます。 例えば10進数で2976という数は、以下のように表すことができます。
最近、ゲーム界隈ではプロシージャルテクスチャー生成だとか、プロシージャルマップ生成だとか、手続き的にゲーム上で必要なデータを生成してしまおうというのが流行りであるが、その起源はどこにあるのだろうか。 メガデモでは初期のころから少ないデータでなるべくど派手な演出をするためにプロシージャルな生成は活用されてきたが、ゲームの世界でプロシージャル生成が初めて導入されたのは、もしかするとドルアーガの塔(1984年/ナムコ)の迷路の自動生成かも知れない。 なぜ私が迷路のことを突然思い出したのかと言うと、最近、Twitterで「30年前、父が7年と数ヶ月の歳月をかけて描いたA1サイズの迷路を、誰かゴールさせませんか。」というツイートが話題になっていたからである。 この迷路を見て「ああ、俺様も迷路のことを書かねば!俺様しか知らない(?)自動迷路生成のことを後世に書き残さねば!」と誰も求めちゃいない使命感が
以前に高橋幸雄先生の授業で聞いて非常に面白いと思ったこと。 オフィスビルとかホテルとか、エレベーターが何基も設置されているビルの場合、エレベーターホールに階数表示が無いことが多い。エレベーターホールで画像検索してみればわかると思う。 これはなぜだろうか。 その理由は、「客がいても、その階を通過することができるようにするため」だ。 基本的に、多数のエレベーターを効率よく動かすのは難しい。工夫された高度なアルゴリズムが使われていることが多い。目標は「客の平均待ち時間を短くする」ことだ。ある階でボタンが押された場合、どのエレベーターがその客を迎えに行くか、という判断が平均待ち時間に大きな影響を与える。難しいアルゴリズムの中で、この点がもっとも重要なところだ。 高層ビルの場合、エレベーターはかなりの速度で走っている。既に客を乗せて走っているエレベーターが他の客を乗せるために停止すると、減速→停止→
2012年01月22日16:36 カテゴリアルゴリズム百選翻訳/紹介 algorithm - 基数木 + 平衡二分探索木 = 三分探索木 珠玉のプログラミング Jon Bentley /小林健一郎訳 最有力候補は、これかも。 Ternary search tree - Wikipedia, the free encyclopedia 三分探索木 - Wikipedia 404 Blog Not Found:algorithm - Patricia Trie (Radix Trie) を JavaScript で最近のTrie研究の傾向は、要素の動的変更が自在にできる一般向けのものではなく、一旦作成したら要素の追加と削除が困難な代わりにものすごくコンパクトになる、簡潔データ構造の応用手段の方に偏っていると素人目に感じるのですが、そろそろJudyたんのごとくハッシュテーブルとガチで闘うとか、逆
2006年のデータマイニング学会、IEEE ICDMで選ばれた「データマイニングで使われるトップ10アルゴリズム」に沿って機械学習の手法を紹介します(この論文は@doryokujin君のポストで知りました、ありがとうございます!)。 必ずしも論文の内容には沿っておらず個人的な私見も入っていますので、詳細は原論文をご確認下さい。また、データマイニングの全体観をサーベイしたスライド資料がありますので、こちらも併せてご覧下さい。 データマイニングの基礎 View more presentations from Issei Kurahashi 1. C4.5 C4.5はCLSやID3といったアルゴリズムを改良してできたもので、決定木を使って分類器を作ります。決定木といえばCARTが良く使われますが、CARTとの違いは以下のとおりです。 CARTは2分岐しかできないがC4.5は3分岐以上もできる C
先日、TimSortというソートアルゴリズムが話題になりました。TimSortは、高速な安定ソートで、Python(>=2.3)やJava SE 7、およびAndroidでの標準ソートアルゴリズムとして採用されているそうです。 C++のstd::sort()よりも高速であるというベンチマーク結果1が話題になり(後にベンチマークの誤りと判明)、私もそれで存在を知りました。実際のところ、ランダムなデータに対してはクイックソート(IntroSort)ほど速くないようですが、ソートというシンプルなタスクのアルゴリズムが今もなお改良され続けていて、なおかつ人々の関心を引くというのは興味深いものです。 しかしながら、オリジナルのTimSortのコードは若干複雑で、実際のところどういうアルゴリズムなのかわかりづらいところがあると思います。そこで今回はTimSortのアルゴリズムをできるだけわかりやすく解
「巨大なAKB48 篠田麻里子 迷路」を作ってみたで使用した迷路自動生成アルゴリズムは、以下の手順です。このアルゴリズムは、「迷路の壁生成はするけれども、”経路をふさぐ=壁と壁の間を新しい壁でつなぐ”とことはしない」というものです。そのため、このアルゴリズムにもとづく限りは、入り口から出口まで辿り着く(ひとつ以上の)経路の存在が必ず保証されます(といっても、動作確認のためのテストはしてないんですけど…)*。 …というわけで!?、「行き止まりしかないという不安」を気にせずに、「巨大なまりこ様 迷路」選手権、もしくは、「たかみな巨大迷路 脱出レース」に挑戦して参加して頂ければ、と思います。 周囲の壁を作る。 まだ壁が作られていない壁格子点をランダムに選び、そこから壁生成を(所定のランダム量にもとづいた回数・長さだけ)スタートさせる 壁生成の先が壁の存在する格子点であれば、その壁生成はせず、次の
TwitterのTLで知ったのだが、少し前に海外の掲示板で"sleep sort"というソートアルゴリズムが発明され、公開されたようだ。このアルゴリズムが面白かったので紹介してみる。 Genius sorting algorithm: Sleep sort 1 Name: Anonymous : 2011-01-20 12:22 諸君!オレは天才かもしれない。このソートアルゴリズムをみてくれ。こいつをどう思う? #!/bin/bash function f() { sleep "$1" echo "$1" } while [ -n "$1" ] do f "$1" & shift done wait example usage: ./sleepsort.bash 5 3 6 3 6 3 1 4 7 2 Name: Anonymous : 2011-01-20 12:27 >>1 なん…だと
みんなのIoT/みんなのPythonの著者。二子玉近く160平米の庭付き一戸建てに嫁/息子/娘/わんこと暮らしてます。月間1000万PV/150万UUのWebサービス運営中。 免責事項 プライバシーポリシー 開発において言語の習得はいわば前段階。データ構造やアルゴリズムを理解して初めて作りたいと思ったプログラムを作れるようになります。データ構造やアルゴリズムは抽象的な概念なので,プログラミング言語やパラダイムが変化してもずっと使い続けることができる。いわば潰しの効く知識になりえるのが良いところ。 よく使われるデータ構造やアルゴリズムを勉強するためには,Data Structure Visualizationのようなサイトを使うといいかもしれない。Webブラウザ上で視覚的に確認できるのがよいところ。例えば,バブルソートやクイックソートのような主要なソートアルゴリズムはここで確認できる。どのよ
Googleアルゴリズムの200の要素を発見しましょう!(Let’s Try to Find All 200 Parameters in Google Algorithm) は2009年に書かれた記事ですが、パンダアップデートが適用された今現在(2011年4月)でも重要項目が多く書かれているもので。 多くはGoogleの特許(合衆国特許出願0050071741)に基づいていますが、筆者のアンが自身の解析結果や予測を盛り込んでいる事で、より実践に近い内容になっています。 SEO初心者の方は、これからのウェブ制作の軸に、SEOエキスパートの方はもう一度自身のサイトを見直す目次として確認してみてはいかがでしょうか。 ドメインに関する13要因 ドメイン年齢 ドメイン取得からの長さ ドメイン登録情報(Who is情報)の表示/非表示 ドメイン種類(サイトレベルドメイン(.com や co.uk) ト
遅ればせながら、あけましておめでとうございます。 先週には、ベイエリアの友人たちがやっているEchofonがPostUpに買収されるなど、幸先のよい新年のスタートとなりました。 さて、最近ホットなマーケットといえばソーシャルゲームですが、ゲームといえばリーダーボード。ハイスコアのランキングで友人や見知らぬ人たちと競うのは、ビデオゲームが誕生した1970年代から欠かせない要素でした。 ところが、インターネット経由で100万人規模のプレイヤーがつながるようになってきた現在、その全体をランキングづけするのは、技術的にも大きなチャレンジとなってきました。 今回は、そのリーダーボードのつくりかたについて、ぼくらの作っているソーシャルゲーム・プラットフォームであるPankiaの運用で得られた知見を共有したいと思います。 自分の順位を知る方法 リーダーボードの基本的な考え方はシンプルで、それはつまり「ユ
17:31 10/01/26 言語雑談会 言語雑談会 なるものに行ってきました。 自分は主に最近のD言語の話題 [PDF] [PPTX] についてと、 最近読んだ Pattern Calculus がイマイチ心に響かなかったという話と、 これも最近読んだ Prolog で SAT ソルバ という論文が格好良すぎて卒倒しそうです、などの話題を雑談していました。 SAT の話をしていてふと突然気づいたんですが、私が今までSATソルバに落としてみたことのある問題は、 すべて割と簡単に CNF(SATソルバがそのまま食べてくれる綺麗な形式の論理式) ができあがる問題だったようです、数独とか。 任意の命題論理式をCNFに変換できる指数爆発しない方法をそういえば知らないぞ俺!としゃべってたら soutaro さんが素晴らしい解説 をして下さいました。ありがたや。 あと shinhさんの 「コンピュータ
トップクラスだけが知る「このアルゴリズムがすごい」――「探索」基礎最速マスター:最強最速アルゴリズマー養成講座(1/4 ページ) プログラミングにおける重要な概念である「探索」を最速でマスターするために、今回は少し応用となる探索手法などを紹介しながら、その実践力を育成します。問題をグラフとして表現し、効率よく探索する方法をぜひ日常に生かしてみましょう。 まだまだ活用可能な探索 前回の「知れば天国、知らねば地獄――『探索』虎の巻」で、「探索」という概念の基礎について紹介しました。すでに探索についてよく理解している方には物足りなかったかと思いますが、「問題をグラフとしてうまく表現し、そのグラフを効率よく探索する」というアルゴリズマー的な思考法がまだ身についていなかった方には、得るものもあったのではないでしょうか。 前回は、「幅優先探索」と「深さ優先探索」という、比較的単純なものを紹介しましたが
このパートでは,プログラミングを勉強するうえで欠かせないアルゴリズムの中でも定番中の定番を紹介します。ソート(並べ替え)やサーチ(検索)などの機能は今では標準のライブラリとして提供されています。実用的なプログラムを作るときにそのものずばりをいちいち書く機会は少ないかもしれません。しかし定番のアルゴリズムは,様々に形を変えて普段のプログラミングに登場します。 解説を読んで仕組みがわかったら,ぜひそれをプログラムにしてみてください。読んだだけではプログラムを書けるようにはなりませんし,プログラムを書いてみて初めて,実は十分に理解できていなかったと気付くことがよくあります。しかもアルゴリズムは特定のプログラミング言語に依存しないので,一度身に付ければ,後でどんな言語を学ぶ場合でも役に立ちます。 1番目から6番目まではソートのアルゴリズム,7番目から9番目まではサーチのアルゴリズムです。一つひとつ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く