出典:日経クロステック、2020年2月7日 (記事は執筆時の情報に基づいており、現在では異なる場合があります) 日経 xTECH内に人工知能(AI)専門チャネル「ビジネスAI」を2019年10月に立ち上げたのを機に、知識共有サイト「Qiita」上でAI/機械学習の記事を同年12月に募集したところ、49本もの記事が集まった。投稿いただいた皆さん、ありがとうございました。 今回、ビジネスAIの編集担当として私が設定した「お題」は以下の3つ。各テーマについて日経 xTECHがQiitaアドベントカレンダーのスポンサーとなり、2019年12月1日~25日まで1日1本ずつ記事を募集した。 AI道場「Kaggle」への道 機械学習をどう学んだか 機械学習ツールを掘り下げる この結果、機械学習を独習するお薦めの書籍やサービス、Kaggleなどの機械学習コンペに入門する方法など、AIや機械学習に興味がある
はじめに データサイエンスや機械学習っておもしろそう!と思いつつも、どうやって勉強をしたら良いかわからない......と感じた経験はありませんか? ちなみに自分もその一人です。 この記事では、機械学習ってそもそも何? AIという言葉は知ってるけど詳しいことはわからないというような初学者でも、知識・経験を積んで機械学習に取り組めるようにするために必要な基礎の基礎から学ぶための勉強法を自分の経験をもとに紹介します!(ここで紹介するものは機械学習の中級者以上の方でも基礎知識の復習として活用できるものかなとも思っています) この記事の続編(データサイエンスはじめて1か月以内で参加したコンペで銀メダル(上位3%)とるまで!)はこちら 概要 (基本的にはこの3stepです) 基礎知識をつける(単語・用語の理解) ライブラリの使い方を理解 実際にコンペに挑戦(Kaggle) 1.機械学習&ディープラーニ
はじめに Step 1, 2, 7に関しては、時間がなければやらなくてもいいと思います。 1. 統計を学ぶ 統計検定2級の取得 2. MLの原理を知る Machine Learning -coursera 勾配降下法の最適化アルゴリズムの概要 3. Pythonを学ぶ Python -Google 4. MLの基礎を学ぶ Machine Learning Crash Course MLでのデータの準備 フルスクラッチで勾配降下法を実装する フルスクラッチでkNNを実装する KMeansアルゴリズムとSVMを操作する方法 kNN, SVM, XGBoostの視覚化 勾配ブースティングとXGBoost Kaggle Masterが教えるXGBoost 決定木のスキルをブラッシュアップする 他に触れておきたいところとして、 LightGBM Gradient Boosting などがあります。(
Fintech Santander Customer Transaction Prediction https://www.kaggle.com/c/santander-customer-transaction-prediction/data Kaggle datasets in finance category (ファイナンス系kaggleデータ一覧) https://www.kaggle.com/tags/finance Bitcoin Price Prediction (LightWeight CSV) https://www.kaggle.com/team-ai/bitcoin-price-prediction Uniqlo (FastRetailing) Stock Price Prediction https://www.kaggle.com/daiearth22/uniqlo
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く